1 / 32

OPSM 501: Operations Management

Ko ç Un iversity Graduate School of Business MBA Program. OPSM 501: Operations Management. Week 12: Inventory Management Order-up-to model. Zeynep Aksin zaksin @ku.edu.tr. Levers for Managing Inventories. Theoretical Inventory I th =R x T th Reduce critical activity times

cain
Download Presentation

OPSM 501: Operations Management

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Koç University Graduate School of Business MBA Program OPSM 501: Operations Management Week 12: Inventory Management Order-up-to model Zeynep Aksin zaksin@ku.edu.tr

  2. Levers for Managing Inventories • Theoretical Inventory Ith=R x Tth • Reduce critical activity times • Eliminate non-value added work • Move work from critical to non-critical • Redesign process to replace serial with parallel processing • Cycle inventory • Average inventory per cycle=Q/2 • Reduce set-up to reduce cycle inventory

  3. Levers for Managing Inventories • Seasonal Inventory • Use pricing and incentive tactics to smooth demand • Increase resource flexibility • Safety inventory-this is next!

  4. A Multi-Period Inventory Model • Often, there are multiple reorder opportunities • Consider a central distribution facility which orders from a manufacturer and delivers to retailers. The distributor periodically places orders to replenish its inventory

  5. orders Pipeline stock On-hand inventory Supply Inventory position Set Up: Simple Supply Chain • Three key questions: • How often to review? • When to place an order? • How much to order?

  6. Timing in the order up-to model • Time is divided into periods of equal length, e.g., one hour, one month. • During a period the following sequence of events occurs: • A replenishment order can be submitted. • Inventory is received. • Random demand occurs. • Lead times: • An order is received after a fixed number of periods, called the lead time. • Let l represent the length of the lead time. An example with l = 1 13-6

  7. Order up-to model vs. newsvendor model • Both models have uncertain future demand, but there are differences… • Newsvendor applies to short life cycle products with uncertain demand and the order up-to applies to long life cycle products with uncertain, but stable, demand. 13-7

  8. Periodic Review, Order-up-to Policy Inventory Position = Quantity + Quantity on hand on order S - Base stock level/Order-up-to Point p - Review period; l - Replenishment lead time  - Demand per unit time ss - Safety stock Ordering Rule: Place an order every p periods so as to bring your inventory position to the Base Stock Level, S.

  9. Inventory position On-hand inventory Inventory Level (p+l) p l time 0 p 2p 3p 4p l p+l 2p+l 3p+l Periodic review with no demand variability

  10. Periodic review with no demand variability Order Quantity, Q = p Average Cycle stock = Q/2 = p / 2 Pipeline stock = l Order-up-to point, S =  (p + l)

  11. Why hold Safety Inventory? • Demand uncertainty • Supply uncertainty Measures of product availability • Product fill rate (f): fraction of demand that is satisfied from product in inventory • Cycle service level (CSL): fraction of replenishment cycles that end with all the customer demand being met

  12. Periodic review with variable demand Order-up-to point (S) =  (p+l) + Safety Stock (ss) Average Order Quantity (Q) = p Average Pipeline stock =  l Average Cycle stock = Q/2 = p / 2 Safety Stock = ss = ?

  13. Inventory position Inventory Level On-hand inventory p+l+ss p+ss l+ss ss 0 p 2p 3p 4p time l p+l 2p+l 3p+l Determination of the Safety Stock

  14. X + = S Probabilistic Models Key idea: Order-up-to target covers demand over time period of p+l

  15. Designing for a target CSL Safety Stock (ss) = Choosing z: a=CSL= P(demand during p+l <= S) z= Fs-1(CSL)

  16. Given: p = 2 weeks l = 3 weeks  = 1.5 units per week 2 = 4 units per week Target service level, CSL=95% Solve: so from table, z = 1.64 Safety stock = Base stock level = Example #1 Average on-hand inv= 1.5x2/2 + safety stock=1.5+7.36=8.86

  17. Given: p = 2 weeks l = 1 week  = 1.5 units per week 2 = 4 units per week Target service level, CSL=95% Solve: so from table, z = 1.64 Safety stock = Base stock level = Example #2

  18. Computer example continued • Suppose we do not know the base-stock level S • We know the company uses a periodic-review, order-up-to policy • From company data we know that average on-hand inventory is 12.6 units • What service level is the store providing?

  19. Example #3 12.6= (1.5 x 2)/2 + z x 2 x z =2.48 F(2.48)=0.993

  20. Computer store: determining policy parameters • Store wants to re-evaluate order frequency • Retain service level of 95% • Apple charges a fixed fee of $25 for shipping and handling of order • Store’s order processing cost is $15 • The model being considered has wholesale price of $3000 • Holding cost rate is estimated to be 20%

  21. Example #4 • Compute EOQ • h= (3000x0.2)/52weeks/yr=$11.5 • K=15+25=40 • Q*=3.2 • p = Q*/m=3.2/1.5=2.15

  22. Delayed Product Differentiation • Products start off undifferentiated; at some point, product variety explodes • Trade-off between product variety vs. inventory and service levels • Design the product so the point of differentiation is delayed as much as possible • Don’t commit to FGI early on

  23. DPD- Standardization • Using common components or processes • Reduces complexity of manufacturing • Increases “flexibility” of work-in-process • Improves service level • Examples: • standardizing head driver board & print mechanism interface in b&w and color printers • generic printer for Mac and Windows users

  24. DPD-Modular Design • Decomposing the complete product into submodules that are easily assembled; delay assembly of product specific modules • Can increase no. of modules • Same benefits as standardization • Examples: • Power supply module in the HP Deskjet printer • Inserting plastic color panel to generic products • Channel assembly in PC industry

  25. DPD – Process Restructuring Postponing (if necessary) reverse operations • Operation divided into two steps, first step common to all products • Reverse the order of two operations with first operation common to all products • Example: • Benetton (dye & knit knit & dye)

  26. When is DPD appropriate? • High uncertainty in demand mix • Long lead times • Short product life cycle • High inventory /stock out costs • Not too costly/time consuming to customize • High value to core component • Low variable cost of differentiating components

  27. Announcement 1 • Next week field trip to Mercedes coach plant • Departure from campus 8:10-visit starts @ 9:30 • Bus info: MUHAMMET GÜLER 05392294281 34 ZP 4194 • Intermediate stop at Ataturk Oto Sanayi: 8:35 • HOŞDERE OTOBÜS FABRİKASI-check web site for directions • Sanayi Mah. Mercedes Bulvarı No. 5, 34500 Esenyurt / İstanbulTel: (0 212) 622 70 00 PbxFax: (0 212) 622 84 00

  28. Announcement 2 • Read the Temsa case before the trip • Bonus assignment-can be done in pairs (5%): • Take notes-ask questions-take photos if allowed to • Strategy: Comment on the 4 product attributes for Mercedes: PQTV • Process documentation: Provide a high level process flow chart • Process Selection: Analyze volume, variety level and its fit with the type of process (position the plant on the product-process matrix based on this analysis)

  29. Announcement 3 • Last session: will play the beer game in-class • Need to read the handout that I will distribute before coming to class • Need to be on time since we will start at 11:00 sharp-aim for arrival at 10:45. • Final exam on January 4 @ 10:00 • Room will be announced

More Related