1 / 28

Information Flow and Cooperative Control of Vehicle Formations

Information Flow and Cooperative Control of Vehicle Formations. 김상훈 CDSL 2008-1-9. Previous Seminar Relative Position Control in Vehicle Formations. Goal Cooperative Formation Control / Decentralized Control Relative Formation / Offset ( Inter-vehicle spacing)

cain
Download Presentation

Information Flow and Cooperative Control of Vehicle Formations

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Information Flow and Cooperative Control of Vehicle Formations 김상훈 CDSL 2008-1-9

  2. Previous SeminarRelative Position Control in Vehicle Formations • Goal • Cooperative Formation Control / Decentralized Control • Relative Formation / Offset (Inter-vehicle spacing) • Graph Theory / Laplacian Matrix / Perron-Frobenius Theorem  λ(L) properties • Theorem 3 • Individual (3)∼(7) system  identical N systems  (8) dynamics • Stabilizing (8) (BIG) ⇔ Stabilizing (11) (SMALL)  Check a single vehicle (with the same dynamics, only modified by a scalar λi)  Easy, Local Controller • 사실Laplacian L뿐만 아니라 일반적인 Matrix의 λ에도 동일하게 사용가능 • Theorem 4 • 가정 • Output y(Absolute Formation)는 관심 없다  Pc1을 0로  Relative Formation dynamics • SISO for individual vehicle • Nyquist Criterion 을 변형 (-1  -λ-1) 하여 Robust한 Controller Design • Evaluating Formations Via λ(L) • L의 Topology에 따른 -λ-1 Table 1  Stability를 짐작할 수 있다. (Stability Margin)

  3. Previous SeminarFormation Stability when PC1=0; relative formations N vehicles together Theorem 3 Theorem 4 When SISO K N individual vehicles # of encirclements of -1

  4. Information flow in Vehicle FormationA. Properties of the information flow loop • 주제 A • Problem • Graph의 Characteristic에 Stability가 큰 영향… • Controller로 들어가는 정보를 처리하고 싶은데… • What to do • Robustness to uncertainty in the Graph • To achieve desired response • How to • Block diagram에서 L(Graph)만 떼어서 생각 • L을 stabilizing 하는 R과 그것을 connection 방법을 제안 Information Flow Law • Stability Analysis by Theorem 4  Theorem 9 • Convergent Value는? 그것의 의미? Consensus란?  Theorem 10 • Result • Theorem9  이것에 맞추어 R을 잘 결정(또는 F결정) by Nyquist-like method  To achieve Robustness to L and Desired response • Theorem10  Consensus가 이루어지기 위한 필요조건

  5. Information flow in Vehicle FormationB. Information Flow in the Loop • 주제B • Problem • Information Flow를 K, P와 함께 연결하면 기대한대로 작동?  Information Flow를 design할 때 생각했던 stability margin 은 L에 관한 것이다.  여전히 P의 uncertainty에 취약하다. • What to do • P의 uncertainty 대항력을 키우자. • 독립적으로 design K to stabilize P 과 design F to stabilize L 을 하고 싶다. • How to do • Vehicle의 motion 정보가 Information Flow Loop에 필요 Predictor 도입 (H) (Feedforward Information Compensator) • H를 잘 설정하면 K와 F를 독립적으로 설계해도 좋아 Theorem 11 • Result • Theorem 11  Separation Principle To design K, F by H

  6. Information flow in Vehicle FormationAssumption & Preliminary • Assumption • Discrete-time Dynamical System • SISO for individual vehicle • Relative Sensing / Relative Formation Dynamics • Preliminary • Decentralized Control • Information  What to Receive from others, Compute and Transmit to others • Information flow law  Information 흐름에 관한 scheme • 각 Vehicle가 가진 Information은 Decentralized Control의 기초 • 여러 Vehicle의 Information은 공통 부분이 생기지 않을까?  Steady state조사  Consensus 확인 예) 다음 번 inform는 자신의 과거 inform, 이웃의 현재 inform, 추가되는 정보 (ex. sensing relative positions)에 의해 결정

  7. Information flow in Vehicle FormationOverall Block Diagram ∵ for sensing & transmission delay (Ass. Strictly Proper) (Averaging information)

  8. Properties of the information flow loopSimple Case : R(z) = (1/z) Information flow loop p y Let One step delay 1. Stability of Information flow loop? 2. Steady State Value of Information? ∵ delay  What Consensus is? • Stability of Information flow loop  neutrally stable • ∵ Perron root(spectral radius) of G <=1 • Steady State Value of Information •  Theorem 6

  9. Theorem 6

  10. Properties of the information flow loopConsensus as the formation Center 본 paper에서 even하게 부여하였지만 uneven 하게도 가능. 하지만 그경우global knowledge가 필요할 수 있음 주의 무엇일까? Graph에 의해 weighting된 Formation Center 모든 Vehicle의 inform.에서 공통으로 수렴 되는 값 “Formation reach consensus as its Center “ 라고 한다. (다른 논문에서 그림 가져 왔음)

  11. Properties of the information flow loopGeneral Case : R(z) is general strictly proper • Stability (Theorem 9) • Steady State Value (Theorem 10)

  12. Theorem 9

  13. Theorem 10

  14. Theorem 10 : About consensus

  15. Properties of the information flow loopExample of F : stability and response F로 원하는 Response를 설계할 수 있다 (Shaping) F가 Information을 Stabilization 시킨다 Aperiodic graph의 경우 모든 가 -0.5 좌측에 위치(Fig.3)하므로  F1는 AperiodicGraph를 Stabilization한다  Theorem 6확인 모든 가 -0.5 좌측 또는 그 위에 위치(Fig.3)하므로  F2는 항상 Graph를 Stabilization한다

  16. Information Flow in the loopStabilities in L and P isolating L • K와 P에 Information Flow Loop를 함께 연결하여 L의 양단에서 Nyquist Criterion 적용 • (L에 대항하는 Robustness)  여전히 P의 uncertainty에 취약하다. • P의 uncertainty 대항력을 키우자. • 독립적으로 design K to stabilize P 과 design F to stabilize L 을 하고 싶다. • Vehicle의 motion 정보가 Information Flow Loop에 필요 Predictor 도입 (H) (Feedforward Information Compensator) • H를 잘 설정하면 K와 F를 독립적으로 설계해도 좋아  Theorem 11

  17. Information Flow in the loopSeparation Principle • Theorem 11 Block1 – by assumption, neutrally stable Block2 – equivalent to information flow law stabilization Block3 – by stabilization p through k Block4 – by assumption of theorem 9

  18. Examples

  19. Discussion • Results • Design of Dynamical System  Vehicles to achieve consensus on the formation center • Feedforward Compensation  to render sensed and transmitted information timely • Limitation • Need for an exact model P • No sensitivity analysis in modeling errors • Sensitivity to mismatches in initial conditions of vehicles Predictor 보다 Observer는 어때? • Linear System with fixed time delays • Nonlinear vehicle 또는 system with variable time delays 으로 확장해보는 것은 어때? • Nonlinear System의 Center Manifold  on which, information flow is restricted  Can extend information flow principle to such nonlinear systems?? • Feedforward term  stability separation  Can be extended to systems with variable time delays?? • Constraint c=1 in information flow  Information flow law : Neutral stable  Never decays out Sensitive to initial conditions 주기적으로 information을 reset하는 상위 레벨의 protocol을 생각해볼 수 있다.

  20. Relative sensing • Identical multi-agent • Decentralized control • Formation Control을 했어 • 간단한 scheme에서 Stability를 보였어 • Scheme을 조금 복잡하게하여 Stability도 생각해봤어 • Consensus의 조건도 간략하게 보였고 • 어떤 응용을 해볼까??? • 무엇에 쓸까…..…. >_<

  21. AppendixNyquist Criterion for Discrete System

More Related