L o g i s z t i k a a l a p j a i
This presentation is the property of its rightful owner.
Sponsored Links
1 / 71

L O G I S Z T I K A A L A P J A I PowerPoint PPT Presentation


  • 58 Views
  • Uploaded on
  • Presentation posted in: General

L O G I S Z T I K A A L A P J A I. L O G I S Z T I K A. KELEMEN TAMÁS. Jó napot kívánok. Összefoglalás. Ø. Az ellátási lánc bizonytalanságai. Ostorcsapás effektus. TÖREKVÉSÜNK:. Az információáramlás kézben tartása!. Ø. Telephely tervezés. Warehouse Location Problem. 20.

Download Presentation

L O G I S Z T I K A A L A P J A I

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


L o g i s z t i k a a l a p j a i

L O G I S Z T I K A A L A P J A I


L o g i s z t i k a a l a p j a i

L O G I S Z T I K A

KELEMEN TAMÁS

Jó napot kívánok

Kelemen Tamás


Sszefoglal s

Összefoglalás

Ø

Az ellátási lánc bizonytalanságai

Ostorcsapás effektus

TÖREKVÉSÜNK:

Az információáramlás kézben tartása!

Kelemen Tamás


L o g i s z t i k a a l a p j a i

Ø

Telephely tervezés

Kelemen Tamás


Warehouse location problem

Warehouse Location Problem

20

kiszállítások

Kelemen Tamás


Warehouse location problem1

Warehouse Location Problem

20

körjárattervezés

Ha nem akarunk külön-külön mindenkihez kimenni

Kelemen Tamás


Warehouse location problem2

Warehouse Location Problem

20

2; b2

X11; c11

1; b1

X22; c22

1; f1

2; f2

4; b4

3; b3

X23; c23

X24; c24

X25; c25

?

6; b6

5; b5

?

X36; c36

X35; c35

7; b7

3; f3

X37; c37

X38; c38

xij * bj (0  xij  1)

xij *cij

8; b8

Ha nem a teljes bj mennyiséget szállítjuk le

Kelemen Tamás


L o g i s z t i k a a l a p j a i

Ø

xij 0

yi0,1

magyarázatát lsd. később

Kelemen Tamás


Warehouse location problem3

Warehouse Location Problem

20

2; b2

X11; c11

1; b1

a2

X22; c22

a1

1; f1

2; f2

4; b4

3; b3

X23; c23

X24; c24

?

X25; c25

6; b6

5; b5

Célfüggvény:

?

X36; c36

X35; c35

7; b7

3; f3

X37; c37

X38; c38

a3

szállítási ktg.

Raktári kapacitáskorlát

8; b8

telepítési ktg.

Kelemen Tamás


L o g i s z t i k a a l a p j a i

22

xij 0

yi0,1

Ha adott a max. raktárkapacitás: ai

A teljes igényt ki kell elégíteni

nem hozzuk vissza!

Legyen elegendő raktárkapacitás

Kelemen Tamás


Warehouse location problem4

Warehouse Location Problem

20

2; b2

X11; c11

1; b1

X22; c22

1; f1

2; f2

4; b4

3; b3

X23; c23

X24; c24

?

X25; c25

6; b6

5; b5

Feltételek:

?

X36; c36

X35; c35

7; b7

3; f3

csak ténylegesen telepített raktárból szállítsunk, azaz yi = 1 esetén

Xij yi

X37; c37

X38; c38

a teljes mennyiséget le kell szállítani, ha több raktárból több tételben szállítjuk is

8; b8

így biztosítható, hogy xij a kívánt értéktartományba essen (0  xij 1)

Xij 0

Kelemen Tamás


Warehouse location problem5

Warehouse Location Problem

20

MEGOLDÁSOK:

Abszolút optimum

Heurisztikák

Nincs optimális megoldás

Van optimum

Nyitó eljárások

javító eljárások

Pl. EOQ

„gyorsak”

„jók”

Van optimum, de nem tudjuk „kivárni”

Pl. szimplex

kombináció

Pl. ütemezés, hozzárendelés

Kelemen Tamás


L o g i s z t i k a a l a p j a i

Ø

Szimplex módszer

Javító megoldás

Induló megoldás

Kelemen Tamás


L o g i s z t i k a a l a p j a i

H E U R I S Z T I K A

Ø

Pl. Wagner – Whitin model

költség

abszolút minimumhely

Lokális minimumhelyek

idő

Kelemen Tamás


Mintap lda

Mintapélda

24

Hová telepítsünk raktárt, hogy a vevőket a legolcsóbban szolgáljuk ki?

vevők

A

B

C

D

E

F

raktárak

Kelemen Tamás


Mintap lda1

Mintapélda

24

bemenő adatok

Szállítási költségek

Potenciális raktárhelyek

Valódi vevők

Raktár fix költsége: fi

Kelemen Tamás


Mintap lda2

Mintapélda

24

Jelölések:

Potenciális telephelyek halmaza

Véglegesen kiválasztott telephelyek halmaza

Véglegesen elvetett telephelyek halmaza

F

Célfüggvény aktuális értéke

átmenetileg kiválasztott telephelyek halmaza

átmenetilegelvetett telephelyek halmaza

Kelemen Tamás


Mintap lda3

Mintapélda

24

vevők

A

B

C

D

E

F

raktárak

Ha a teljes mennyiséget egy raktárból szállítjuk ki.

Kelemen Tamás


Mintap lda4

Mintapélda

24

bemenő adatok

Szállítási költségek

Potenciális raktárhelyek

Valódi vevők

Raktár fix költsége: fi

Töltsük ki a táblázatot!

Kelemen Tamás


Mintap lda5

Mintapélda

24

Ha az összes vevőt ugyanabból a raktárból szolgáljuk ki.

Kiindulási adatok:

22

2

24

+

+

+

+

+

=

+

18

4

22

+

84

88

4

71

+

3

88

91

71

=

Σ

12

13

14

10

4

17

70

Kelemen Tamás


Mintap lda6

Mintapélda

24

1. lépés

legyen

úgy

Határozzunk meg egy

legyen

Kelemen Tamás


Mintap lda7

Mintapélda

24

22

2

71

71

k = 2

Kelemen Tamás


L o g i s z t i k a a l a p j a i

24

Mostantól a megtakarítás számít

és j=1,…,n

Kelemen Tamás


Mintap lda8

Mintapélda

24

-1

3

-3

-2

-1

0

22

2

71

-1

3

-68

-1

0

1

71

2

-3

-2

1

-70

2

k = 2

Kelemen Tamás


Mintap lda9

Mintapélda

24

Ehhez képest mennyit lehet megtakarítani, ha még egy raktárt nyitok?

3

1

3

4

1

0

3

2

1

2

5

2

k = 4

Kelemen Tamás


Mintap lda10

Mintapélda

24

esetén

3

1

3

1

4

0

3

k = 1

Kelemen Tamás


Mintap lda11

Mintapélda

24

Mennyit lehet még megtakarítani, ha még egy raktárt nyitok?

3

1

3

-2

3

0

-1

0

-2

3

3

-1

-2

3

-1

0

0

-1

4

k = 4

Kelemen Tamás


L o g i s z t i k a a l a p j a i

végeredmény

24

helyekre telepítünk raktárakat

A

B

C

D

E

F

Kelemen Tamás


Vizsgap lda

vizsgapélda

Egy kereskedő cég 5 potenciális telephelyet keres az EU nagy városaiban, hogy onnan a 7 legfontosabb vevőjét kiszolgálja.

A telephely létesítésének költségeit 10 év alatt írjuk le lineárisan.

Az i-ik telephelyről a j-ik vevőhöz történő szállítás költségei az alábbi táblázatban találhatók EUR/Egys.

Kelemen Tamás


Mintap lda12

Mintapélda

Kiindulási adatok:

2500

4000

2000

5000

2000

5000

5000

Kelemen Tamás


Mintap lda13

Mintapélda

Egységnyi menny. száll. ktg.: cij; Telepítési Ktg.: Ki; Éves fenntart. ktg.: ki

Kiindulási adatok:

=

+

lsd. következőslide

*

2500

4000

2000

5000

2000

5000

5000

2500 * 48 = 120.000

Kelemen Tamás


Mintap lda14

Mintapélda

Éves szállítási és fix ktg.-ek:

880

880

860

780

840

1. lépés: az első végleges telephely kiválasztása

k = 4

Kelemen Tamás


Mintap lda15

Mintapélda

Ehhez képest mennyit lehet megtakarítani, ha még egy raktárt nyitok?

-80

40

280

140

220

120

200

100

2. lépés: további telephely kiválasztása, tiltása; max. megtakarítás

i = 1

Kelemen Tamás


Mintap lda16

Mintapélda

Ehhez képest mennyit lehet megtakarítani, ha még egy raktárt nyitok?

280

140

220

120

200

100

2. lépés: további telephely kiválasztása; max. megtakarítás

k = 2

Kelemen Tamás


Mintap lda17

Mintapélda

Ehhez képest mennyit lehet megtakarítani, ha még egy raktárt nyitok?

280

140

220

120

200

100

2. lépés: további telephely kiválasztása; max. megtakarítás

k = 2

Kelemen Tamás


Mintap lda18

Mintapélda

Ehhez képest mennyit lehet megtakarítani, ha még egy raktárt nyitok?

k

20

120

20

-80

3. lépés: további telephely kiválasztása; max. megtakarítás

i = 5

Kelemen Tamás


Mintap lda19

Mintapélda

52

Ehhez képest mennyit lehet megtakarítani, ha még egy raktárt nyitok?

280

20

120

20

-80

3. lépés: további telephely kiválasztása; max. megtakarítás

k = 3

Kelemen Tamás


L o g i s z t i k a a l a p j a i

Végeredmény

52

helyekre telepítünk raktárakat

Kelemen Tamás


Ttekint s

Áttekintés

Optimális telephelytervezés

Felhasznált adatok:

Raktár telepítési és fenntartási ktg.

Szállítási ktg. a vevőinkhez

Egyszerűbb-e a helyzet, ha csak a szállítási költséget vesszük figyelembe?

Kelemen Tamás


P tfeladatok

Pótfeladatok

Optimális telephely kiválasztása

Szállítási ktg. a vevőinkhez

A telepítési és/vagy bérleti díjjakban nincs nagy különbség!

Szabad telephely választás

Részben kötött telephely választás

A régió bármely pontja alkalmas lehet

A régió meghatározott pontjai jöhetnek szóbapl. autópálya, vasútvonal, folyó, stb.

Kelemen Tamás


L o g i s z t i k a a l a p j a i

Részben kötött telephely választás

Adott V1 (x1,y1); V2 (x2,y2);…; V5(x5,y5);vevő, akiknek rendszeresen szállítunk

Adott az

y = m*x + b

egyenes

melyre az elosztó raktárunkat telepíteni akarjuk

Az egyes vevőknek szállítandó mennyiségek: I1, I2, …, I5

Cél: határozzuk meg a raktár u, v koordinátáját úgy, hogy az összes anyagmozgatási teljesítmény minimális legyen.

Kelemen Tamás


R szben k t tt telephely

Részben kötött telephely

P4 (15,16 ); 20

Hová tegyük a raktárt?

P1 (6,12); 25

Y= 0.5 * X + 6,5

P3 (12,4 ); 10

P2 (18,1 ); 40

P5 (0,0 ); 10

Kelemen Tamás


L o g i s z t i k a a l a p j a i

Részben kötött telephely választás

A célfüggvényünk:

Min.

i = 1,…,n

Amelyhez a

y = m*u + b

mellékfeltétel járul

Kelemen Tamás


L o g i s z t i k a a l a p j a i

Részben kötött telephely választás

Sokféleképpen megoldható:

Iterációs módszer

Helyettesítsük be a mellékfeltételt a célfüggvénybe!

Min.

i = 1,…,n

Kelemen Tamás


L o g i s z t i k a a l a p j a i

Részben kötött telephely választás

Sokféleképpen megoldható:

Iterációs módszer

Keressük meg a szélsőértékeket!

= 0

ahol

Kelemen Tamás


L o g i s z t i k a a l a p j a i

Részben kötött telephely választás

Az u szerinti deriváltból u-t kiemelve

egy iterációs összefüggést kapunk

Tetszés szerinti pontossággal közelíthetjük az optimális végeredményt

ahol

A v pedig:

Kelemen Tamás


L o g i s z t i k a a l a p j a i

Részben kötött telephely választás

Az eljárás:

u -ra felveszünk egy önkényes értéket

kiszámítjuk

-t

-t

és

Addig ismételjük, míg elegendően pontos megoldást kapunk!

Kelemen Tamás


P lda megold sa

Példa megoldása

EXCELL táblával

Minden adat ismert

Használjuk a solvert

Kelemen Tamás


R szben k t tt telephely1

Részben kötött telephely

P4 (15,16)

Hová tegyük a raktárt?

P1 (6,12)

Y= 0.5 * X + 6,5

R (9,3; 11,2)

Q = 991

P3 (12,4)

P2 (18,1)

P5 (0,0)

Kelemen Tamás


N zz k ugyanezt kicsit

Nézzük ugyanezt kicsit

„életközelibben”

Kelemen Tamás


L o g i s z t i k a a l a p j a i

Feladat

Az alábbi városokba szállítunk:

Budapest, 40 ezer db. / év

Baja, 25 ezer db. / év

Szeged, 10 ezer db. / év

Szolnok, 20 ezer db. / év

Miskolc, 10 ezer db. / év

1 depót akarunk telepíteni, de hová tegyük?

Megj. A főnök Bp-en lakik, és az M5-ön akar közlekedni

Kelemen Tamás


L o g i s z t i k a a l a p j a i

Válasszuk ki az origót!

Pl. Baja, de bármi más is lehet.

Írjuk fel az M5 egyenletét

Határozzuk meg a vevők koordinátáit!

Kelemen Tamás


L o g i s z t i k a a l a p j a i

10

Y = 10 - 1,7 * x

0

Kelemen Tamás


L o g i s z t i k a a l a p j a i

Bp.: X = 1 cm; Y = 8,8 cm

Baja: X = 0 cm; Y = 0 cm

Miskolc: X=6,8 cm; Y=12,8 cm

Szeged: X=4,6 cm; Y=0,6 cm

Szolnok: X=4,6 cm; Y=6,8 cm

10

Y = 10 - 1,7 * x

0

Kelemen Tamás


P lda megold sa1

Példa megoldása

EXCELL táblával

Minden adat ismert

Használjuk a solvert

Kelemen Tamás


L o g i s z t i k a a l a p j a i

Bp.: X = 1 cm; Y = 8,8 cm

Baja: X = 0 cm; Y = 0 cm

Miskolc: X=6,8 cm; Y=12,8 cm

Szeged: X=4,6 cm; Y=0,6 cm

Szolnok: X=4,6 cm; Y=6,8 cm

Optimális hely: Alsónémedi

10

Y = 10 - 1,7 * x

0

Kelemen Tamás


L o g i s z t i k a a l a p j a i

Bp.: X = 1 cm; Y = 8,8 cm

Baja: X = 0 cm; Y = 0 cm

Miskolc: X=6,8 cm; Y=12,8 cm

Szeged: X=4,6 cm; Y=0,6 cm

Szolnok: X=4,6 cm; Y=6,8 cm

Ha változnak a szállítandó mennyiségek,megváltozik az optimális telephely

Optimális hely: Alsónémedi

10

Y = 10 - 1,7 * x

0

Kelemen Tamás


L o g i s z t i k a a l a p j a i

„Szabad” telephely választás

Adott V1 (x1,y1); V2 (x2,y2);…; V5(x5,y5);vevő, akiknek rendszeresen szállítunk

az elosztó raktárunkat bárhová telepíthetjük

Az egyes vevőknek szállítandó mennyiségek: B1, B2, …, B5

Cél: határozzuk meg a raktár u, v koordinátáját úgy, hogy az összes anyagmozgatási teljesítmény minimális legyen.

Kelemen Tamás


L o g i s z t i k a a l a p j a i

„Szabad” telephely választás

A célfüggvényünk:

Min.

i = 1,…,n

Sokféleképpen megoldható:

Iterációs módszer

Kelemen Tamás


L o g i s z t i k a a l a p j a i

„Szabad” telephely választás

Sokféleképpen megoldható:

Iterációs módszer

Keressük meg a szélsőértékeket!

= 0

= 0

Kelemen Tamás


L o g i s z t i k a a l a p j a i

„Szabad” telephely választás

az iterációs összefüggésünk

Tetszés szerinti pontossággal közelíthetjük az optimális végeredményt

ahol

Kelemen Tamás


L o g i s z t i k a a l a p j a i

„Szabad” telephely választás

Az eljárás:

Először meghatározzuk a „tömegközéppontot”

-t

-t

és

Addig ismételjük, míg elegendően pontos megoldást kapunk!

Kelemen Tamás


R szben k t tt telephely2

Részben kötött telephely

V4 (15,16)

Hová tegyük a raktárt?

V1 (6,12)

Q = 991

R (9,3; 11,2)

V3 (12,4)

V2 (18,1)

V5 (0,0)

Kelemen Tamás


P lda megold sa2

Példa megoldása

EXCELL táblával

Szabad telephelyválasztás esetén:

Kelemen Tamás


R szben k t tt telephely3

Részben kötött telephely

V4 (15,16)

Hová tegyük a raktárt?

V1 (6,12)

Q = 991

R (9,3; 11,2)

Q = 880

R (13,1; 5,2)

V3 (12,4)

V2 (18,1)

V5 (0,0)

Kelemen Tamás


N zz k ugyanezt kicsit1

Nézzük ugyanezt kicsit

„életközelibben”

Kelemen Tamás


L o g i s z t i k a a l a p j a i

Feladat

Az alábbi városokba szállítunk:

Budapest, 40 ezer db. / év

Baja, 25 ezer db. / év

Szeged, 10 ezer db. / év

Szolnok, 20 ezer db. / év

Miskolc, 10 ezer db. / év

1 depót akarunk telepíteni, de hová tegyük?

Megj. A főnök bárhová elmegy az új terepjárójával

Kelemen Tamás


L o g i s z t i k a a l a p j a i

Megoldás: X = 10 cm; Y = 12 cm

Bp.: X = 1 cm; Y = 16 cm

Baja: X = 0 cm; Y = 0 cm

Miskolc: X=14,6 cm; Y=23,2 cm

Szeged: X=9,8 cm; Y=1 cm

Szolnok: X=10 cm; Y=12 cm

Megoldás: X = 3,3 cm; Y = 13,3 cm

Optimális hely: Nyáregyháza

17,9

Kelemen Tamás

Y = 17,9 - 1,7 * x

0


Mi lesz ha a miskolci vev

Mi lesz, ha a miskolci vevő

5-ször annyit kér mint eddig?

Nézzük meg az Excelben!

Kelemen Tamás


L o g i s z t i k a a l a p j a i

Bp.: X = 1 cm; Y = 16 cm

Baja: X = 0 cm; Y = 0 cm

Miskolc: X=14,6 cm; Y=23,2 cm

Szeged: X=9,8 cm; Y=1 cm

Szolnok: X=10 cm; Y=12 cm

Megoldás: X = 7 cm; Y = 14,7 cm

Optimális hely: Nagykáta

17,9

Kelemen Tamás

Y = 17,9 - 1,7 * x

0


V g e

V É G E

KÖSZÖNÖM

A

FIGYELMET

Kelemen Tamás


  • Login