1 / 59

Microelettronica Anno Accademico 2006-2007 Prof. Adelio Salsano

Microelettronica Anno Accademico 2006-2007 Prof. Adelio Salsano. Presentazione e programma del corso. OBIETTIVO Tecnologie, blocchi elementari e architetture per l’analisi e la sintesi di circuiti e sistemi microelettronici ALTERNATIVE Circuiti non programmabili Circuiti programmabili

brinly
Download Presentation

Microelettronica Anno Accademico 2006-2007 Prof. Adelio Salsano

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MicroelettronicaAnno Accademico 2006-2007Prof. Adelio Salsano Presentazione e programma del corso 1: Introduction

  2. OBIETTIVO Tecnologie, blocchi elementari e architetture per l’analisi e la sintesi di circuiti e sistemi microelettronici ALTERNATIVE Circuiti non programmabili Circuiti programmabili Circuiti dedicati Soluzioni miste Il corso fornisce le competenze necessarie per la valutazione delle prestazioni di circuiti e sistemi elettronici come prerequisito per la sintesi 1: Introduction

  3. Notizie sul corso Orario Mercoledì 11,30 Aula 9 Giovedì 11,30 Aula 7 Venerdì 11,30 Aula 12 Materiale didattico • Diapositive lezioni • N.H.E. Weste, D. Harris “Principles of CMOS VLSI Design”, Addison Wesley • R. L. Geiger, P.E. Allen, N.R. Strader VLSIdesign techniques for analog and digital Circuits, Mac Graw Hill Int. Ed. 1: Introduction

  4. PROGRAMMA DEL CORSO • Introduzione • Considerazioni generali • Aspetti tecnici ed economici • Richiami circuitali: • Inverter, NAND, NOR • Pass transistor, transmission gate • Latch, flip flop • Regole di progetto • Il transistor MOS • Caratteristiche I-V • Caratteristiche C-V • Modelli delle capacità G,S,D • Effetti non ideali 1: Introduction

  5. (segue Programma) • Inverter CMOS • Caratteristiche in DC • Beta, rapporto dei beta, margini di rumore • Inverter dipendenti dal rapporto dei beta • Inverter a pass transistor e tristate • Modelli RC di ritardo • Tecnologie CMOS: • Litografia,formazione del canale, ossidazione, contatti e metallizzazione • Regole di progetto • Elementi circuitali: transistor, caoacità, resistenze, transistor bipolari, memorie 1: Introduction

  6. (segue Programma) • Stima delle prestazioni • Ritardi dei circuiti elementari: sforzo logico • Dissipazione di potenza • nterconnessioni • Margini progettuali • Affidabilità e diagnostica dei circuiti integrati: • elettromigrazione, riscaldamento, latchup • guasti transitori e permanenti • testing on line e off line • modelli di guasto • design for testability 1: Introduction

  7. (segue Programma) • La simulazione circuitale: SPICE • Logica a pass transistor • Circuiti BICMOS • Confronto tra le famiglie • Logica statica e dinamica • Sistemi digitali complessi: latch, flip flop, sincronizzazione • microprocessori, memorie, logica programmabile • Circuiti e sistemi analogici: • Interruttori e resistenze attive • specchio di corrente • riferimenti di corrente e tensione • amplificatori invertenti e differenziali • amplificatore operazionale 1: Introduction

  8. Brief History Till 1970 I.C. bipolar, afterwards MOSFET 1: Introduction

  9. Brief History (cont.) • 1958: First integrated circuit • Flip-flop using two transistors • Built by Jack Kilby at Texas Instruments • 2003 • Intel Pentium 4 mprocessor (55 million transistors) • 512 Mbit DRAM (> 0.5 billion transistors) • 53% compound annual growth rate over 45 years • No other technology has grown so fast so long • Driven by miniaturization of transistors • Smaller is cheaper, faster, lower in power! • Revolutionary effects on society 1: Introduction

  10. Vantaggi della tecnologia integrata • Dimensioni: Fette di silicio (2003) fino a 12 pollici • Velocità • Consumo di potenza • Dimensioni del sistema • Costo del sistema Legge di MOORE: raddoppio ogni anno e mezzo del numero di componenti per chip CHIP 1: Introduction

  11. MERCATO DEI CIRCUITI INTEGRATI 1: Introduction

  12. COMPLESSITA’ MICRO INTEL 1: Introduction

  13. FREQUENZE MICRO INTEL 1: Introduction

  14. Silicon Lattice • Transistors are built on a silicon substrate • Silicon is a Group IV material • Forms crystal lattice with bonds to four neighbors 1: Introduction

  15. Dopants • Silicon is a semiconductor • Pure silicon has no free carriers and conducts poorly • Adding dopants increases the conductivity • Group V: extra electron (n-type) • Group III: missing electron, called hole (p-type) 1: Introduction

  16. p-n Junctions • A junction between p-type and n-type semiconductor forms a diode. • Current flows only in one direction 1: Introduction

  17. nMOS Transistor • Four terminals: gate, source, drain, body • Gate – oxide – body stack looks like a capacitor • Gate and body are conductors • SiO2 (oxide) is a very good insulator • Called metal – oxide – semiconductor (MOS) capacitor • Even though gate is no longer made of metal 1: Introduction

  18. nMOS Operation • Body is commonly tied to ground (0 V) • When the gate is at a low voltage: • P-type body is at low voltage • Source-body and drain-body diodes are OFF • No current flows, transistor is OFF 1: Introduction

  19. nMOS Operation Cont. • When the gate is at a high voltage: • Positive charge on gate of MOS capacitor • Negative charge attracted to body • Inverts a channel under gate to n-type • Now current can flow through n-type silicon from source through channel to drain, transistor is ON 1: Introduction

  20. pMOS Transistor • Similar, but doping and voltages reversed • Body tied to high voltage (VDD) • Gate low: transistor ON • Gate high: transistor OFF • Bubble indicates inverted behavior 1: Introduction

  21. Power Supply Voltage • GND = 0 V • In 1980’s, VDD = 5V • VDD has decreased in modern processes • High VDD would damage modern tiny transistors • Lower VDD saves power • VDD = 3.3, 2.5, 1.8, 1.5, 1.2, 1.0, … 1: Introduction

  22. Transistors as Switches • We can view MOS transistors as electrically controlled switches • Voltage at gate controls path from source to drain 1: Introduction

  23. CMOS Inverter 1: Introduction

  24. CMOS Inverter 1: Introduction

  25. CMOS Inverter 1: Introduction

  26. CMOS NAND Gate 1: Introduction

  27. CMOS NAND Gate 1: Introduction

  28. CMOS NAND Gate 1: Introduction

  29. CMOS NAND Gate 1: Introduction

  30. CMOS NAND Gate 1: Introduction

  31. CMOS NOR Gate 1: Introduction

  32. 3-input NAND Gate • Y pulls low if ALL inputs are 1 • Y pulls high if ANY input is 0 1: Introduction

  33. 3-input NAND Gate • Y pulls low if ALL inputs are 1 • Y pulls high if ANY input is 0 1: Introduction

  34. CMOS Fabrication • CMOS transistors are fabricated on silicon wafer • Lithography process similar to printing press • On each step, different materials are deposited or etched • Easiest to understand by viewing both top and cross-section of wafer in a simplified manufacturing process 1: Introduction

  35. Inverter Cross-section • Typically use p-type substrate for nMOS transistors • Requires n-well for body of pMOS transistors 1: Introduction

  36. Well and Substrate Taps • Substrate must be tied to GND and n-well to VDD • Metal to lightly-doped semiconductor forms poor connection called Schottky Diode • Use heavily doped well and substrate contacts / taps 1: Introduction

  37. Inverter Mask Set • Transistors and wires are defined by masks • Cross-section taken along dashed line 1: Introduction

  38. Detailed Mask Views • Six masks • n-well • Polysilicon • n+ diffusion • p+ diffusion • Contact • Metal 1: Introduction

  39. Fabrication Steps • Start with blank wafer • Build inverter from the bottom up • First step will be to form the n-well • Cover wafer with protective layer of SiO2 (oxide) • Remove layer where n-well should be built • Implant or diffuse n dopants into exposed wafer • Strip off SiO2 1: Introduction

  40. Oxidation • Grow SiO2 on top of Si wafer • 900 – 1200 C with H2O or O2 in oxidation furnace 1: Introduction

  41. Photoresist • Spin on photoresist • Photoresist is a light-sensitive organic polymer • Softens where exposed to light 1: Introduction

  42. Lithography • Expose photoresist through n-well mask • Strip off exposed photoresist 1: Introduction

  43. Etch • Etch oxide with hydrofluoric acid (HF) • Seeps through skin and eats bone; nasty stuff!!! • Only attacks oxide where resist has been exposed 1: Introduction

  44. Strip Photoresist • Strip off remaining photoresist • Use mixture of acids called piranah etch • Necessary so resist doesn’t melt in next step 1: Introduction

  45. n-well • n-well is formed with diffusion or ion implantation • Diffusion • Place wafer in furnace with arsenic gas • Heat until As atoms diffuse into exposed Si • Ion Implanatation • Blast wafer with beam of As ions • Ions blocked by SiO2, only enter exposed Si 1: Introduction

  46. Strip Oxide • Strip off the remaining oxide using HF • Back to bare wafer with n-well • Subsequent steps involve similar series of steps 1: Introduction

  47. Polysilicon • Deposit very thin layer of gate oxide • < 20 Å (6-7 atomic layers) • Chemical Vapor Deposition (CVD) of silicon layer • Place wafer in furnace with Silane gas (SiH4) • Forms many small crystals called polysilicon • Heavily doped to be good conductor 1: Introduction

  48. Polysilicon Patterning • Use same lithography process to pattern polysilicon 1: Introduction

  49. Self-Aligned Process • Use oxide and masking to expose where n+ dopants should be diffused or implanted • N-diffusion forms nMOS source, drain, and n-well contact 1: Introduction

  50. N-diffusion • Pattern oxide and form n+ regions • Self-aligned process where gate blocks diffusion • Polysilicon is better than metal for self-aligned gates because it doesn’t melt during later processing 1: Introduction

More Related