1 / 22

HEL.F.A.

HEL.F.A. Helium du fundamental aux applications People involved at Institut Nèel: Alain Benoit Aurelien Bideaud (PhD) Philippe Camus Christian Hoffmann Alessandro Monfardini Loren Swenson (Post-doc) + 1 PhD Roma-Grenoble (November 2008) LAOG: Xavier F. Desert.

brinda
Download Presentation

HEL.F.A.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. HEL.F.A. Helium du fundamental aux applications People involved at Institut Nèel: Alain Benoit Aurelien Bideaud (PhD) Philippe Camus Christian Hoffmann Alessandro Monfardini Loren Swenson (Post-doc) + 1 PhD Roma-Grenoble (November 2008) LAOG: Xavier F. Desert

  2. Projects (since Archeops) • PLANCK. Space dilution refrigerator • - EDELWEISS. Direct Dark Matter search at the Frejus tunnel • NbSi bolometers (high-impedance and TES) arrays development. Coordinating the CNES DCMB collaboration (Grenoble-Orsay-Paris) • mm-wave demonstrator Camera for IRAM (DCMB) • - TERIBOL. Hot-electron NbSi bolometers (led by CSNSM Orsay) • OLIMPO ballon. Roma-Cardiff-Grenoble. 0.5-0.85mm NbSi arrays • Kinetic Inductance Detectors. Millimeter-wave detectors, helium detector, neutrino mass • 1.25-2mm diplexer array development. Dual band concept. Collaboration with CNRS-IMEP (Institut de Microélectronique Electromagnétisme et Photonique) and CSIC-UC, Santander

  3. The DCMB collaboration Nèel Grenoble Coordination, design, tests, integrations, simulations, part of the microfabrication. CSNSM Orsay Thermometers NbSi, microfabrication, hot-electron bolometers (TERIBOL) IEF Orsay Microfabrication (MINERVE) CESR SQUID electronics IAS Orsay TES tests APC Paris SQUID multiplexing (SiGe electronics) LPN QPC switches LPSC Grenoble EM Simulations, MPI optics LAOG Grenoble Astronomy and simulations

  4. Cryogenics-Optics Development

  5. Bolometric Camera compatible IRAM (helium)

  6. Bolometric Camera compatible IRAM (PT)

  7. Martin Puplett Interferometer (MPI) • Etendue spectrale: 50 – 3000 GHz • expérimentale < 800 GHz • étendue de faisceau > 50 GHz • polariseur 10 – 3000 GHz • miroir < 30000 GHz • Résolution: 1,3 GHz • 1% Amplitude • Reproductible • 7 positions de polarisation sur 90° • Durée pour un spectre: de 1 à 10 min

  8. “CameraGrenoble” cryostat cross-section Mixing Chamber plate

  9. 2.5 arc-min design (existing) M6 (flat) • - 4 K lens • - 100 mK pupil • - 100 mK baffle • 100 mK lens • 50-300mK telecentric image M7 (X-Y Parabola) Cryostat window Telescope focal plane

  10. A bit of ZEMAX (existing stuff) M1 border (r > 14m) imaged on the pupil

  11. 6 arc-min double band configuration Brief specifications: 4 K HDPE lens: =16 cm 100 mK HDPE lenses: =12 cm Beam size at Dichroic position: =11 cm Useful focal plane: =64 cm Effective aperture: f/1.22 TELECENTRIC M6 (X-Y parabola) 1mm array (CEA-PACS) 2mm array (DCMB NbSi or MKIDs) M7 (X-Y parabola) Dichroic (100mK) Cryostat window (=22cm) Foreseen improvement: 3 simultaneous bands (diplexer 1-2 mm + 850m PACS-like)

  12. Baffling •  2-D (Heron of Alexandria) • 3-D (ZEMAX) e.g. 25% of the scattered light hits the cold lens; 6-50% escapes back through the pupil (scattering model is critical). mTOT 2 Kg

  13. DETECTORS DEVELOPMENT

  14. Shunt (7nm Pd) Antenna (70nm Al or Nb) Insulating layer (100nm SiN) Thermometer (100nm NbSi) Contacts (40nm Nb) Deep Etching from the back The sliced 204 pixels array (version 0)

  15. A closer look at the array (version 0) 204new001 and 204new002 Test matrix (August 2007) Goal: understand the complicate EM behaviour and provide a base for the next design. Seeing light but poor efficiency (tested at 1mm only)

  16. Electrical measurements: pixels uniformity • Thermal behaviour • virtually identical  membranes OK ! Less than 10% absolute dispersion in R at 100mK. • again, thermometers OK !

  17. 2 mm Design for Summer 2009 (version 1) Same fabrication process as v.0

  18. Final Design for 2mm • Drawback of v.1: routing and transmission lines • Change to slot antennas Working on an array of microstrip-coupled bow-tie slots. Again: not combining the signals in phase. Use separate shunts (or lossy lines) instead. Preserve the single antenna pattern + simpler RF design. Today working on: RF simulations (CST microwave Studio and SONNET), membrane structuration (solved by XeF2 at IEF, Orsay). First fabrication RUN in 2009.

  19. Multiplexing High-impedance bolometers The switches are QPC (Quantum Point Contact) transistors from CNRS-LPN. First full test (real bolometers) successfully performed in 2007, now using “routinely” the multiplexing for optical testing in the DIABOLO cryostat.

  20. Multiplexing

  21. Microwave Kinetic Inductance Detectors 81 pixels LEKIDs array (in fabrication) GOAL: demonstrator at IRAM ?? Grenoble Camera cryostat fitted with two proper HF lines (3-9 GHz LNA, supercond. coax, attenuators, DC blocks) • New activity (2008) • Designed, fabricated and tested high-Q (105) • NbN resonators • Demonstrated a highly sensitive LHe • detector for hydrodynamics applications • (APPLIED PHYSICS LETTERS 93, 134102) • /4 resonators:slot antennas and grid designs • LEKID design (Roma, IRST, Cardiff) • - MUX electronics in progress

  22. Ongoing: a diplexer array Collaborations: IMEP (Grenoble), LAHC (Chambery), CSIC-UC (Santander) for superconducting transmission lines and planar antennas simulations. STATUS: original (positive, step impedance) design ready. D.Rauly, A.Monfardini, A.Colin, P.Febvre, PIERS proceedings 852-856, Cambridge, USA, July 2008 From September 2008, working on new Slots + double-stub design. Purely coplanar geometry or microstrip (TBD). Possible coupling: NbSi bolometers or /2 resonators.

More Related