- 66 Views
- Uploaded on
- Presentation posted in: General

Tuesday’s Test

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Tuesday’s Test

Hints

- A set of Integers is shown by I.
- I = (…-4, -3, -2, -1, 0, 1, 2, 3, 4 …)

- Note that zero is an integer.
- It is neither positive or negative.

- Follow the rules when multiplying 2 integers.
- The product of 2 integers with the same sign is positive.
- (+) (+) = (+)
- (-) (-) = (+)

- The product of 2 integers with different signs is negative.
- (-) (+) = (-)
- (+) (-) = (-)

- The product of 2 integers with the same sign is positive.

- Standard Notation
- It is not common practice to write expressions in the following format:
- (-2) - (+5)

- It is not common practice to write expressions in the following format:

- –2 - 5

- Remember, if you have a negative outside the brackets, when you drop the brackets change the signs of every term in the brackets.
- Eg. -( -4 + 5 – 5t) = 4 – 5 + 5t

- If you have a poistive, or nothing, outside the bracket, than re-write!!!
- Eg. (5 + 7 – 3f) = 5 + 7 – 3f
- Eg. +(6x + 4 – 8) = 6x + 4 - 8

- The set of rational numbers, shown by Q, is the set of all positive and negative numbers that can be written in fractional form.
- Rational numbers are fractions that can be positive or negative.
- All rules for fractions apply to rational numbers.
- The line between the numerator and the denominator represents the operation of division.
- Therefore a/b = a b

- To add and subtract rational numbers:
- Convert mixed rational numbers to improper rational numbers.
- Write all numbers with a common denominator.
- Combine numerators. Remember to use standard notation.
- Write the final answer in lowest terms.

- To multiply rational numbers:
- Convert mixed rational numbers to improper rational numbers.
- Eliminate common factors from the numerator an denominator.
- Multiply the numerators and then the denominators.
- Use the rules of integers to determine the sign of the answer.
- Check that the answer is in lowest terms

- Convert all mixed rational numbers to improper rational numbers.
- Multiply by the reciprocal. Flip the fraction after the division sign.
- Follow the rules for multiplying rational numbers.

- Write the decimal over 10, 100, 1000
- The convert to the lowest form.
- Ex….