1 / 40

DEPFET, a vertex detector for the ILC

DEPFET, a vertex detector for the ILC. DEPFET Principle Basic system Ladder proposal ILC demands Testbeam performance Device simulation Summary & Outlook. J.J. Velthuis for the DEPFET collaboration. Monolithic Active Pixel detector A p-FET transistor is integrated in every pixel.

brick
Download Presentation

DEPFET, a vertex detector for the ILC

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DEPFET,a vertex detector for the ILC • DEPFET Principle • Basic system • Ladder proposal • ILC demands • Testbeam performance • Device simulation • Summary & Outlook J.J. Velthuis for the DEPFET collaboration Jaap Velthuis, Bonn University

  2. Monolithic Active Pixel detector A p-FET transistor is integrated in every pixel. By sidewards depletion potential minimum created below internal gate. Electrons, collected at internal gate, modulate transistor current MIP source top gate drain clear bulk n+ p+ p+ n+ n+ ~1µm p s n i x internal gate a y r t 50 µm e + - - m - - - m - - y + s - - n + + - p+ rear contact DEPFET Principle Jaap Velthuis, Bonn University

  3. DEPFET Principle • Advantages: • Fast signal collection due to fully depleted bulk • Low noise due to small capacitance and amplification in pixel • Transistor can be switched off by external gate – charge collection is then still active ! • Non-destructive readout • Disadvantages: • Need to clear internal gate. • Need steering chips. Jaap Velthuis, Bonn University

  4. Gate Switcher DEPFET Matrix 64x128 pixels, 36 x 28.5µm2 Clear Switcher Current Readout CUROII Basic system • Select and Clear signals provided by SWITCHER • 64 x 2 outputs • Max ΔV = 25V • Read out row-wise: CURO • current based read out • 128 channels • CDS • real time hit finding & zero-suppression • row rate up to 24 MHz • DEPFET matrix parameters are being optimized • Various pixel sizes • Various doping profiles Jaap Velthuis, Bonn University

  5. ILC requirements • Time structure: 1 train of 2820 crossings in ~1 ms every ~200ms • Hit density: for r = 15 mm: ~ 100 tracks / mm2 / train • Plan to read out 20x during train • Row readout rate: > 20 MHz • Turn off in between to save power • Occupany < 0.5 % • Radiation length: ~0.1% X0 per layer • thinned sensors (50 μm) • low power consumption -> no active cooling • Radiation tolerance:  200 krad (for 5 years operation) • Resolution: few µm ( pixel size ≤ 25 x 25 µm2) • Impact parameter resolution a<5µm && b<10µm Jaap Velthuis, Bonn University

  6. Ladder proposal • Modules have active area ~13 x 100 mm2 • Read out on both sides. • Detectors 50µm thick, with 300µm thick frame yields 0.11% X0 • SWITCHER & CURO chips connected by bump bonding CURO SWITCHER Jaap Velthuis, Bonn University

  7. ILC Power • Challenge: no active cooling • Measured Power Dissipation: • Switcher: 6.3 mW per active channel at 50MHz • CURO: 2.8 mW / channel • Assumed Power Dissipation of DEPFET Sensor: • 0.5 mW per active pixel • duty cycle: 1/200 • Only active pixel dissipate power • 1024 active pixels per module • 8 modules in Layer 1 => 8192 active pixels • Expected Power Dissipation in Layer 1 • Sensor: 8192 x 0.5 mW / 200 = 20 mW • Switcher: 16 x 6.3 mW / 200 = 0.5 mW • Curo: 8192 x 2.8 mW / 200 = 114 mW • For Layer 1 Sum: 135 mW For 5 Layer DEPFET Vertex Detector:Total ~ 3.6 W  no active cooling (note Bill Cooper@ILC workshop Ringberg: Can remove up to 80W using gasflow) Jaap Velthuis, Bonn University

  8. Challenge: 50µm thick detectors sensor wafer handle wafer 2. bond wafers with SiO2 in between 3. thin sensor side to desired thick. 4. process DEPFETs on top side 5. etch backside up to oxide/implant 1. implant backside on sensor wafer first ‘dummy’ samples: 50µm silicon with 350µm frame thinned diode structures: leakage current: <1nA /cm2 Thinning Thinning technology for active area established Currently with 150mm wafers at BSOI at TraciT, Grenoble Jaap Velthuis, Bonn University

  9. 60Co Radiation hardness • Challenge: rad. hard up to 200 krad • Irradiations with 60Co and X-rays (~17keV) up to ~1Mrad (SiO2) • Threshold shift of the MOSFET (~4V) can be compensated by bias voltage shift Jaap Velthuis, Bonn University

  10. Test columns inject current Zero suppression • CURO (readout chip) has a 0-suppression feature • Have used it in August testbeam. Analysis in progress… It works!! Jaap Velthuis, Bonn University

  11. 1 2 3 4 Scintillator DEPFET Scintillator 3 x 3 mm² beam Testbeam • DESY test beam with 6 GeV e- • Bonn ATLAS telescope system: • double sided strip detectors • pitch 50 µm (no intermediate strips) • readout rate 4.5 kHz (telescope only) • DUT: 450µm thick DEPFET with CCG and HE • Row rate 2.5 MHz (no 0-suppression) Jaap Velthuis, Bonn University

  12. Pedestal calculated as average signal after hit removal Noise is σ of signal distribution after pedestal & common mode subtraction & hit removal Some pixels are blocked because they are: Very noisy Strange pedestal Hot Pedestal & Noise Jaap Velthuis, Bonn University

  13. Clustering • Look for hits: • pixel with largest signal && >5σ • Add neighbors with signal ≥2σ in maximum area • Clusters mostly confined to 3x3 • S/N=112.0±0.3 Jaap Velthuis, Bonn University

  14. Position resolution • Using CoG: • σX=8.7±0.1µm σY=7.0±0.1µm • Using η: • σX=8.1±0.1µm σY=7.1±0.1µm pixel size=36x22µm • Note in Y η worse than CoG • Remaining crosstalk in Y direction. Still under study…. • Numbers still include uncertainty in predicted position (6 GeV particles) Jaap Velthuis, Bonn University

  15. Multiple Scattering • From GEANT simulation, found √(σ2int+σ2MS)=6.94µm • Uncertainty not well known, but point is σ≤5µm. High energy testbeam ended Sept 3rd; analysis in progress Jaap Velthuis, Bonn University

  16. Look for clusters in ROI of predicted position ±2 pixels Efficiency @ 5σ=99.75% Some hits at “wrong location” due to multiple scattering ? Applying very modest χ2-cut Efficiency @ 5σ=99.96% Seed outside ROI Efficiency Jaap Velthuis, Bonn University

  17. Purity • Good cluster has a residual in both X and Y better than 30µm • Bad clusters are number of clusters found in the background. • Still, using seed cut 7σ purity & efficieny ≈100% • Note: MPV seed around 60σ Jaap Velthuis, Bonn University

  18. New devices • 2 Large chips in next production • Final ILC 512x4096 • Large area device • 512 x 512 matrix • Pixel size: 32x24µm² • array size: 16.38x12.29 mm² • Chip size: 21x18mm² • Long ½ ladder size • 128 x 2048 matrix • pixel size: 24 x 24 µm² • array size: 3.07 x 49.15 mm² • chip size: 8.5 x 56 mm² Jaap Velthuis, Bonn University

  19. Performance of a DEPFET vertex detector at ILC • Huge study simulating physics events using DEPFET vertex detector • Here results with 450µm thick detector and 230e- noise: • Correspondence is excellent!! Jaap Velthuis, Bonn University

  20. Simulation • DEPFET implemented in MOKKA (GEANT4-ILC package) • Digitization in Marlin: • Landau fluctuations • Charge transport, sharing & diffusion • Lorentz shift (33º@4T) • Electronic noise (100 e- for ILC, 230e- TB comparison) • IP resolution very good! (demands: a<5µm b<10µm) Jaap Velthuis, Bonn University

  21. Summary • DEPFET good candidate for ILC vertex detector. • Project is in full swing. Meets already demands on • Radiation length (0.11 X0) • Radiation hardness (ΔVth shift~4V@1Mrad) • Power consumption (<5W full detector) • Zero suppression feature works • Position resolution (≲5µm) • For a 450µm thick detector S/N=112.0±0.3 • Efficiency & Purity ~100% at 7σ • DEPFET vertex detector implemented in MOKKA • Correspondence between testbeam and simulation is excellent! • DEPFET ILC proposal yields a very good IP resolution • a=2.4µm and b=7.0µm at 3T • Need to improve S/N and readout speed • S/N „easy“: DEPFET transistor ⇒ improve W/L Jaap Velthuis, Bonn University

  22. Outlook • Currently analysing high energy testbeam data: • Detailed charge collection study • Quantatively test zero suppression • Precise resolution measurement • Build large matrices (currently in production) • Also still developing in parallel different types of DEPFETs • Further development of the readout chips ongoing • New SWITCHER chips are submitted. Expected early December (0.35µm CMOS) • New CUROs are being designed • Implement transimpedence amplifier • Implement ADC • Implement neighbor logic for 0-suppression GOAL: Produce full scale prototype ladder by 2010 Jaap Velthuis, Bonn University

  23. Position resolution CoG • Centre-of-Gravity assumes linear charge sharing • σX=8.7±0.1µm σY=7.0±0.1µm pixel size=36x22µm • Numbers still include uncertainty on predicted position Jaap Velthuis, Bonn University

  24.  algorithm • Writing CoG for 2 “strips” • Linear charge sharing   flat, but in real life is not. • Reconstruct position: Jaap Velthuis, Bonn University

  25. Readout speed • Still need to improve the readout speed Jaap Velthuis, Bonn University

  26. Clearing Clear complete All charge removed • CURO measures: Isig,i+Iped,i & Iped,i+1 • Need to remove all charge such that Iped,i+1=Iped,i • COMPLETE CLEAR @ Vclear=18V! Far too high for radiation hard technology Jaap Velthuis, Bonn University

  27. HighE vs non-HighE • HighE extra n-type implant • Moves internal gate deeper into bulk • Clearing takes places deeper in the bulk • Lower signals, but easier clearing clear channel Internal gate Optional HighE implant Jaap Velthuis, Bonn University

  28. Clearing HighE • CURO measures: Isig,i+Iped,i & Iped,i+1 • Need to remove all charge such that Iped,i+1=Iped,i • COMPLETE CLEAR possible for HighE with low voltages (~7V)⇒ possible to make radhard SWITCHER in standard CMOS Jaap Velthuis, Bonn University

  29. DEPFET for Near Detector • DEPFET advantages: • Fully active thickness of 450 µm • Tracking inside device • Event rate no problem (~5 Hz pro plane) • Pixel size ok (IP τ≈60µm) • Challenges: • 18 planes of 0.5x0.5 m2 • Need larger matrices ? • Mechanics (but no low mass requirement) Jaap Velthuis, Bonn University

  30. Comparison with ILC Jaap Velthuis, Bonn University

  31. Author list Univ. of Bonn: M.Karagounis, R.Kohrs, H.Krüger, M. Mathes, L.Reuen, C.Sandow, E.von Törne, M.Trimpl, J.Velthuis, N.Wermes Univ. of Mannheim: P.Fischer, F.Giesen, I.Peric Politecnico di Milano: M. Porro MPI Halbleiterlabor Munich: O Hälker, S. Herrmann,L.Andricek, G.Lutz, H.G. Moser, R.H.Richter, M.Schnecke, L.Strüder, J.Treis, P.Lechner, S. Wölfel THCA of Tsinghua Univ.: C. Zhang, S.N. Zhang Jaap Velthuis, Bonn University

  32. DEPMOS Technology • DEPMOS pixel array cuts through one cell Clear Gclear Channnel Metal 2 Metal 1 Oxyd Poly 2 Metal 2 Metal 1 Poly 2 Poly 1 p n+ Deep n Deep p Along the channel Perpendicular to the channel Double poly / double aluminum process on high ohmic n- substrate Low leakage current level: < 200pA/cm² (fully depleted – 450µm) Jaap Velthuis, Bonn University

  33. GATE- SWITCHER CLEAR- SWITCHER 1 2 3 4 64x128 DEPFET Matrix CURO Readout • Readout current based: • SWITCHERs turn on a row using an external Gate • CURO measures Signal+Pedestal current • Signal charge removed • CURO measures Pedestal current • CDS in CURO chip Jaap Velthuis, Bonn University

  34. Excellent noise • Single pixel device • 10 µs shaping • Room temperature (22° C) Jaap Velthuis, Bonn University

  35. Noise dependence • Pixel readout noise: 63 – 14eV (17 – 3.6 e- ENC) Energy resolution: 126 eV FWHM @ Mn-Ka Line corresponding to 4.9 e- ENC Excellent noise • Large structure (64x64): • 75 x 75 µm2 pixel size • 45 µm gate circumference / 5 µm gate length • Drain in center of pixel • Cut gate geometry • Curved edge • Double metal • Operated at: • Pixel current 30 µA • Line processing time 25 µs Jaap Velthuis, Bonn University

  36. Room temperature Back side illuminates, fast drain readout Shaping time: 3μs Clear pulse period 1 ms with width 3 μs WIMS • Wide-band Imaging and Multi-band Spectrometer (WIMS) is part of China’s spacelab mission . • Observe high-energy bursts, transients and fast-varying sources over a broad spectral range simultaneously • Using Macro pixels • Pixel size 0.5x0.5 mm2 • “Si-drift chamber readout using DEPFET” Jaap Velthuis, Bonn University

  37. Switcher und CURO • Steuer-ASIC SWITCHER II: • 0.8µm AMS HV Technologie • Maximaler Spannungshub: 25 V • Leistungsaufnahme: 1mW/Kanal @ 30MHz • 2x64 Kanäle mit internem Sequenzer 20V ! Switching 20V @ 30MHz • Auslese-ASIC CURO II: • 0.25µm CMOS Technologie • 128 Kanal Stromauslesechip • Pedestalstrom-Korrektur (CDS) • Trefferidentifikation und Null-Unterdrückung • Trefferzwischenspeicher • Leistungsaufnahme: 2.5mW/Kanal @ 20MHz • Rauschen 43±1 nA Jaap Velthuis, Bonn University

  38. SWITCHER • Steering-ASIC SWITCHER II: • 0.8µm AMS HV Technology • Maximum Voltage swing: 25 V • Power dissipation: 1mW/Channel @ 30MHz • 2x64 channels with internal sequencer 20V ! Jaap Velthuis, Bonn University

  39. Readout Low power consumption Fast random access to specific array regions • Read filled cells of a row • Clear the internal gates • of the row • - Read empty cells Jaap Velthuis, Bonn University

  40. Simplified standard technology p+ guard ring SiO2 Al n+ structured p+ on top unstructured n+ in bond region Thinning • Material (Top and Handle): 150mm, FZ, ≈130 Ohm.cm • Oxidation 230 nm • Full sheet P-implant back side top wafer • Engineered BSOI at TraciT, Grenoble: • Wafer Bonding • Annealing 1050 degC, 4h • Grinding, CMP: 50 μm top wafer • Edge treatment, polishing Top and Handle wafer Jaap Velthuis, Bonn University

More Related