Methods for laser burning data preprocessing parameterization of pulses
Download
1 / 25

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses - PowerPoint PPT Presentation


  • 109 Views
  • Uploaded on

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses. Ing. Jana Hájková DSS 8. 4. 2009. laser burning project. project description aim: to create a n adjustable system for laser burning simulation – part of the system cooperation

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Methods for Laser Burning Data Preprocessing: Parameterization of Pulses' - brennan-howell


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Methods for laser burning data preprocessing parameterization of pulses

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses

Ing. Jana Hájková

DSS 8. 4. 2009


Laser burning project
laser burning project Parameterization

  • project description

    • aim: to create an adjustable system for laser burning

    • simulation – part of the system

  • cooperation

    • NTC – laser burning simulation, data explorer, measurement of burned samples

    • Lintech – laser samples burning

    • KMA – automatic pulse detection algorithm development

  • possible ways of research

    • data preprocessing (samples parameterization, pulse detection)

    • burning simulation

    • simulation verification, samples comparison

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses


Laser burning principle 1 2
laser burning principle 1/2 Parameterization

  • laser – electromagnetic radiation

  • after the radiation strikes the material:

    • reflected, absorbed, transmitted

    • excitation of free electrons (metals)

    • vibrating in the structure of the material (insulators)

    • material heating – melting, boiling, vaporization, plasma

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses


Laser burning principle 2 2
laser burning principle 2/2 Parameterization

  • previous description –laser affects the material surface continuously

  • more laser pulses burning

  • parameters affecting the burning results:

    • used material and laser

    • material roughness

    • number and position of burned laser pulses

    • laser motion

    • laser angle of incidence according to the material surface

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses


Literature laser burning
literature – laser burning Parameterization

  • Anisimov, S. I., 1968: Vaporization of metal absorbing laser radiation. Soviet Physics JETP, Vol. 27, pp. 182.

  • Bäuerle, D., 2000: Laser Processing and Chemistry. Berlin Springer Verlag. ISBN: 978-3540668916.

  • Bulgakova, N. M., Stoian, R., Rosenfeld, A., Hertel, I. V., Campbell E. E. B., 2007: Fast Electronic Transport and Coulomb Explosion in Materials Irradiated with Ultrashort Laser Pulses. Laser Ablation and its Applications, Springer Berlin / Heidelberg. ISBN: 978-0-387-30452-6.

  • Dahotre, N. B., Harimkar, S. P. 2008. Laser Fabrication and Machining of Materials, Springer, New York, USA.

  • Steen, W. M., 1991: Laser Material Processing. Springer-Verlag, New York Berlin Heidelberg. ISBN: 0-387-19670-6.

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses


Laser burning simulation
laser burning simulation Parameterization

  • reasons for the simulation

    • real burning of experiments with usage of optimal laser parameters

  • pulse burning:

    • into one place

    • along a curve

    • in area

  • simulation model design

    • based on real data

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses


Input data
input data Parameterization

  • samples burned and measured by the confocal microscope

  • surface high map

  • data set

    • each sample burned several times

    • pulses number sequence

      (influence of the result on the number of laser pulses)

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses


Parametric description of a sample
parametric description of a sample Parameterization

  • burning affected area

  • similar samples exploration

    • similarity of the pit

    • irregularity of the transition ring

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses


Pulse approximation 1 3
pulse approximation 1/3 Parameterization

  • approximation of the pit cross-section with a parabole

  • from the top view

    – elliptical shape of the pulse

  • elliptical paraboloid

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses


Pulse approximation 2 3
pulse approximation 2/3 Parameterization

  • transition ring cross-section approximation – parabole

  • revolving a parabola along the elliptic trajectory

    • the top half of the parabolic elliptic torus

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses


Pulse approximation 3 3
pulse approximation 3/3 Parameterization

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses


Roughness generation
roughness generation Parameterization

  • real samples – measured in high detail – roughness of the material

  • heat affected area – irregularities

    • roughness on the pit bottom

    • irregular waves around the outer border of the transition ring

    • local defects on the transition ring

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses


Pelin noise function 1 3
Pelin noise function Parameterization 1/3

  • wide range of application in the computer graphics (textures generating, …)

  • usable for areal noise generation

  • combination of noise and interpolation functions

  • 1D

    • random points generation

    • Hermit interpolation H(t) = t 2*(3-2t)

    • final Perlin noise:

      sum of several functions with different frequencies and amplitudes

    • octaves (frequency of each function is twice as the frequency of the previous one )

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses


Pelin noise function 2 3
Pelin noise function Parameterization 2/3

  • 2D

    • generation of random matrix

    • 2D interpolation

    • different number of summed actaves (2, 4, 6)

    • same number of octaves, each following summed with ½ and ¼ amplitude than the previous one

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses


Pelin noise function 3 3
Pelin noise function Parameterization 3/3

  • amplitudes vector

    • [0.25, 0.25, 1, 1, 0.5, 0.5], [0.5, 0.5, 1, 1, 3, 3], [2, 0, 0, 0, 0.5, 0.5]

  • surface generation – 3D view

    • Perlin noise function

    • ^2

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses


Perlin noise function application
Perlin noise function application Parameterization

  • pit bottom roughness

  • local defect generation

    • mask usage

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses


Waves modulation 1 2
waves modulation 1/2 Parameterization

  • waves representation – polyline

    • whole or its part

    • segmentation (number or representing points)

    • difference of the points position from the ellipse

    • width and maximal height of the wave

  • several waves application on the smooth surface

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses


Waves modulation 2 2
waves modulation 2/2 Parameterization

  • plain wave × full wave

    • for the whole polyline

    • into the center – linear decrementation of the surface height

  • full wave application on the smooth surface

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses


Sample surface generation results
sample surface generation results Parameterization

  • 10, 50, 100 laser pulses burned into steel

real sample

generated sample

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses


Literature sample parameterization
literature – sample parameterization Parameterization

  • Ebert, S. E., Musgrave, F. K., Peachey, D., Perlin, K., Worley, S., 2003: Texturing & Modelling, A Procedural Approach, Third edition. Elsevier Science. ISBN: 1-55760-848-6.

  • Perlin, K. 1985. An Image Synthetizer, Proceedings of the 12th annual conference on Computer graphics and interactive techniques, ISBN: 0‑89791-166-0. ACM New York, USA, pp. 287-296.

  • Perlin, K. 2002. Improving noise, In Proceedings of the 29th annual conference on Computer graphics and interactive techniques, ISBN: 0730‑0301. ACM New York, USA, pp. 681-682.

  • Polack, T., 2003: Focus on 3D Terrain Programming. Premier Press, USA. ISBN: 1-59200-028-2.

  • Žára, J., Beneš B., Felkl P. 2005. Modernípočítačová grafika, ISBN: 80‑251-0454-0. Computer Press, Brno, Czech Republic.

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses


Similar samples comparison
similar samples comparison Parameterization

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses


Trend of parameters in dependence on the number of burned laser pulses
trend of parameters in dependence on the number of burned laser pulses

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses



Future research
future research Parameterization of Pulses

  • sample parameterization automation

  • methods for automatic pulse detection

  • burning simulation

  • methods for samples comparison

  • system verification

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses


thank you for your attention Parameterization of Pulses

?

Methods for Laser Burning Data Preprocessing: Parameterization of Pulses


ad