1 / 9

Esercitazione 9/3/07 (…e precedenti)

Esercitazione 9/3/07 (…e precedenti). 1) Bistabile con Opamp. bistabile con opamp .SUBCKT OPAMP1 INP INM OUT PARAMS: VUMP=10 VUMM=-10 AD=400K E1 OUT 0 VALUE={MAX(MIN(AD*V(INP,INM),VUMP),VUMM)} .ENDS R1 1 0 1k R2 1 2 1k R3 3 4 2k R4 3 2 1k XAMP 3 1 2 OPAMP1 PARAMS: AD=500k

brendon
Download Presentation

Esercitazione 9/3/07 (…e precedenti)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Esercitazione 9/3/07(…e precedenti)

  2. 1) Bistabile con Opamp bistabile con opamp .SUBCKT OPAMP1 INP INM OUT PARAMS: VUMP=10 VUMM=-10 AD=400K E1 OUT 0 VALUE={MAX(MIN(AD*V(INP,INM),VUMP),VUMM)} .ENDS R1 1 0 1k R2 1 2 1k R3 3 4 2k R4 3 2 1k XAMP 3 1 2 OPAMP1 PARAMS: AD=500k VIN 4 0 DC 0 PWL (0,0) + (1u,0) (1.001u,-5) (1.021u,-5) (1.022u,0) + (3u,0) (3.001u,4) (3.021u,4) (3.022u,0) + (4.5u,0) (4.501u,-3) (4.521u,-3) (4.522u,0) + (6u,0) (6.001u,-5) (6.021u,-5) (6.022u,0) * condizione iniziale per far partire l'opamp in SAT+ .IC V(3)=7 .TRAN 1n 7u 0 1n .PROBE V(2) V(VIN) .END

  3. 2) Trigger di Schmidt MOS Trigger di Schmidt .MODEL PMOD PMOS LEVEL=1 VTO=-0.7 KP=100u .MODEL NMOD NMOS LEVEL=1 VTO=0.7 KP=250u MP1 2 in 3 3 PMOD W=25u L=0.35u MP2 out in 2 2 PMOD W=25u L=0.35u MP3 0 out 2 2 PMOD W=25u L=0.35u MN1 1 in 0 0 NMOD W=10u L=0.35u MN2 out in 1 1 NMOD W=10u L=0.35u MN3 3 out 1 1 NMOD W=10u L=0.35u COUT out 0 0.3P IC=3.3 VDD 3 0 DC 3.3 * per visualizzare la caratteristica statica Vout / Vin VIN in 0 DC 0 PWL (0,0) (75n,3.3) (150n,3.3) (225n,0) (300n,0)

  4. * per visualizzare il funzionamento da comparatore con isteresi * commentare il VIN precedente e de-commentare il seguente * VIN in 0 DC 0 PWL * + (0,3) (20n,3) (40n,0.8) (60n,0.8) (80n,2.3) (100n,2.3) * + (120n,1.3) (140n,1.3) (160n,2.8) * + (200n,2.8) (220n,0.7) (240n,2.7) (260n,0.6) (280n,2) .TRAN 1n 300n 0 100p .PROBE V(VIN) V(cout) .END

  5. 3) Monostabile Monostabile con formatore di impulsi; visualizzare V(1) V(2) Vout Vp Vm .SUBCKT OPAMP INP INM OUT PARAMS: VUMP=10 VUMM=-10 AD=400K E1 OUT 0 VALUE={MAX(MIN(AD*V(INP,INM),VUMP),VUMM)} .ENDS .MODEL DMOD D R1 Vout Vp 5k R2 Vp 0 5k RR Vm Vout 10k CC Vm 0 150n D1 Vm 0 DMOD XAMP Vp Vm Vout OPAMP PARAMS: AD=500k Vpulse 2 0 DC 0.5 PWL (0,0) (1m,0) (1.001m,-10) (1.011m,-10) (1.012m,0) +(11m,0) (11.001m,-10) (11.011m,-10) (11.012m,0) D2 Vp 1 DMOD R4 1 0 50 C4 1 2 10n .TRAN 1m 13m 9m 100n .PROBE .END

  6. 4) Astabile con OpAmp Astabile con Opamp; visualizzare V(Vout), V(1)-V(Vout), I(CCAP) .PARAM B1=-2.6759 .SUBCKT OPAMP INP INN OUT PARAMS: VUMP=10 VUMN=-10 A=10K EAMP OUT 0 VALUE={MAX(VUMN,MIN(A*V(INP,INN),VUMP))} .ENDS XAMP 1 2 Vout OPAMP RRA 2 0 1K RRB 2 Vout 1K RR 1 4 1767.6 V1 4 0 DC {B1} CCAP Vout 1 113N .TRAN 10u 5m 0 0.1u .IC V(1,Vout)=1 .PROBE .END

  7. 5) Oscillatore Colpitts GC Oscillatore di Colpitts GATE COMUNE .MODEL NMOD NMOS LEVEL=1 VTO=0.6 KP=50u MN 3 0 2 2 NMOD W=2.78u L=1u C1 2 1 50p C2 3 2 50p L3 4 3 113u R 2 1 7k VDD 4 0 DC 2.5 VSS 1 0 DC -2.5 .IC V(2)=-2.5 .TRAN 1n 200u 0 1n .PROBE V(0,2) .END

  8. 5) Oscillatore Colpitts GC Oscillatore di Colpitts GATE COMUNE .MODEL NMOD NMOS LEVEL=1 VTO=0.6 KP=50u MN 3 0 2 2 NMOD W=2.78u L=1u C1 2 1 50p C2 3 2 50p L3 4 3 113u R 2 1 7k VDD 4 0 DC 2.5 VSS 1 0 DC -2.5 .IC V(2)=-2.5 .TRAN 1n 200u 0 1n .PROBE V(0,2) .END

  9. 6) Oscillatore Sinusoidale OSCILLATORE sin .SUBCKT OPAMP IN OUT E1 OUT 0 VALUE={ IF(V(IN)<-1, -20/3, IF( V(IN)>1,20/3, 10*V(IN)-10/3*PWRS(V(IN),3)))} .ENDS .SUBCKT FILTRO IN OUT PARAMS: Q=5 F0= 100K AMAX =0.1066 ZIN=1k .PARAM PI=3.1415926535 .PARAM R1={ZIN*(1-AMAX)} .PARAM R2={ZIN*AMAX} .PARAM L1={Q*ZIN/(2*PI*F0)} .PARAM C1={1/(Q*ZIN*2*PI*F0)} R1 IN 1 {R1} L1 1 2 {L1} C1 2 OUT {C1} R2 OUT 0 {R2} .ENDS XAMP 1 2 OPAMP XFILTRO 2 1 FILTRO PARAMS: Q=5 F0=100K AMAX=0.1066 ZIN=1k .IC V(1)=1p .TRAN 100u 50.02m 50m 100n .PROBE V(1) V(2) .END

More Related