1 / 103

Chapter 8 Spectroscopic methods of structure determination

Chapter 8 Spectroscopic methods of structure determination. 结构测定的波谱方法. Introduction Ultraviolet Spectroscopy (UV) 紫外光谱 ---- 测定有机物中是否存在共轭双键和芳香族化合物 Infrared Spectroscopy (IR) 红外光谱 ---- 测定有机物中官能团。

Download Presentation

Chapter 8 Spectroscopic methods of structure determination

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 8Spectroscopic methods of structure determination 结构测定的波谱方法

  2. Introduction Ultraviolet Spectroscopy (UV) 紫外光谱----测定有机物中是否存在共轭双键和芳香族化合物 Infrared Spectroscopy (IR)红外光谱----测定有机物中官能团。 Nuclear Magnetic Resonance Spectroscopy (NMR) 核磁共振谱----测定有机物中不同类型的氢或碳的数目和位置。(1H NMR and 13C NMR) Mass Spectrometry (MS)质谱----测定有机物的分子量。

  3. The characteristics of spectroscopic determination Microscale sample (1 – 5 mg, 样品少) It need short time to determine sample(时间短) Identify structure very fast.(结构确认快而准) Most are nondestructive (多不破坏样品) 重点:了解简单原理, 简单识谱

  4. The electromagnetic spectrum 电磁波谱

  5. Ultraviolet spectroscopy(紫外光谱, 15-13, p 666) • UV spectoscopy observes electronic transitions and provides information on the electronic bonding in the sample.

  6. σ* σ→ σ* π* n→ σ* ΔE E n π→ π* UV π n→ π* σ 1) Spectral region of UV: 200-400nm 2) Ultraviolet light and electronic transition (紫外光与电子跃迁)

  7. π→ π*:K带, 吸收峰强, 共轭双键增加, 向长波方向移动, B带, 苯的吸收带, 宽 230~270 nm, 中心254 nm E带, 把苯环看成乙烯键或共轭乙烯键跃迁引起的吸收带. n→ π*:R带, > 270 nm, 吸收峰较弱, C=O, C=N, -NO2

  8. Absorptance π→ π*:K带 n→ π*:R带 Wavelength

  9. 增大 A compounds that contain a longer chain of conjugated double bonds absorbs light at a longer wavelength. 共轭体系增加, 吸收波长增大, 即吸收“红移”

  10. β – Carotene 胡罗卜素 β – Carotene 胡罗卜素 Lycopene 番茄红素

  11. 酸式结构, 无色 碱式结构, 红色 酚酞

  12. 3) Obtaining an UV spectrum

  13. reference cell source 光源 Ir detector 检测仪 A λ Is recorder 记录仪 monochromator 单色器 sample cell 样品池 UV测定常用溶剂: CH3OH, CH3CH2OH

  14. Lambert-Beer Rule 朗伯-比尔定律 UV principle A----absorbance 吸光度 ε--- molar extinction coefficient 摩尔消光系数 c----molar concentration of sample,mol/L l-------the length, cm 液层厚度 Is--- 透过样品的光强度 Ir ---透过空白样的光强度

  15. 4) Interpreting UV spectra (解谱) (1) 判断有无共轭体系存在,或有无芳烃、醛、酮、羧酸、芳胺等有机物。 每增加一个共轭双键,波长增加 30~40 nm; 每增加一个烷基取代基, 波长增加约 5 nm. See: Table 15-2 (p 671) (problem: 15-3, 15-22)

  16. (2) 共轭链连有未共用电子对基团如:-NH2, -NR2, -OH, -OR, -SR, -Cl, -Br, -I,可产生p~π共轭,使化合物颜色加深,λmax 向长波方向移动-----把这样的基团称为助色基. 发色基; 记录格式 2,5-Dimethyl-2,4-hexadiene

  17. logε ε λ/nm λ/nm 苯在己烷中的吸收光谱 联苯类化合物的紫外光谱图

  18. 280nm (ε13500); 295nm (ε27000) 顺式: 由于位阻,共轭不是太好,故波长短,ε小些 反式: 共轭效果好,故波长增加,ε增大

  19. Assignment:T-1, 15-28; T-2, 8-2

  20. 2. Infrared spectroscopy (IR, 红外光谱, 12-1~12, p 490-519) • IR spectroscopy observes the vibrations of the bonds and provides evidence of the functional groups present.

  21. Spectral region of IR: • 中红外: λ2.5-25 μm (波数4000~400 cm-1)

  22. 2) Molecular vibrations and IR spectroscopy Stretching vibration 伸缩振动 symmetric stretching antisymmetric stretching Bending vibration 弯曲振动 Rocking Twisting Scissoring wagging

  23. IR principle like a spring ν:振动频率 k:化学键的力常数 μ:折合质量 Frequency: decreases with increasing atomic weight; increase with bonding energy. 键能越大,折合质量越小,频率越高,峰出现在高波数区.

  24. Bond stretching frequency (Table 12-1)

  25. Frequency range of functional groups 1500-3600, functional group region 官能团区 <1500, fingerprint region 指纹区

  26. IR-active and IR-inactive vibration • A polar bond is usually IR-active. • A nonpolar bond in a symmetrical molecule will absorb weakly or not at all.   只有分子振动时偶极矩(dipole moment)发生变化的振动(Δμ≠0)才有红外吸收。偶极矩μ=δ×d 偶极矩变化越大,红外吸收越强.  偶极矩变化与以下因素有关: 电负性(电负性差别大,吸收强)、 振动方式(不对称伸缩>对称伸缩>弯曲振动) 分子的对称性(对称性差,吸收峰强) 氢键(使吸收峰变宽变强) problem 12-2

  27. 3) Measurement of the IR spectrum Infrared spectrometer (红外光谱仪) 红外测定方法: 1. KBr disc (KBr压片法) 2. 液膜法(NaCl盐片) 3 石腊油法 A Nicolet 800 FT-IR, 400 to 4000 cm-1)

  28. Characteristic absorptions of common functional groups(常见官能团的特征吸收) hydrocarbons (烃): stretching frequency(cm-1)

  29. Alkane CH3(CH2)6CH3 CH3: 1380

  30. Alkene CH3(CH2)3CH=CH2

  31. Alkyne

  32. benzene =C-H toluene Aromatic compounds

  33. Alcohols and amines (醇和胺):

  34. Alcohol

  35. Amine

  36. Ethers C-O-C 1150-1070 [strong] 1120

  37. carbonyl compounds (羰基化合物): Usually, it’s the strongest IR signal.

  38. Ketone

  39. Aldehyde

  40. Carboxylic acid

  41. Amide Acetamide, 乙酰胺 3348, 3173 N-H 1681 C=O

  42. Carbon - Nitrogen Stretching • C - N 1200 cm-1. • C = N 1660 cm-1 and is much stronger than the C = C absorption in the same region. • C  N absorbs strongly just above 2200 cm-1. The alkyne C  C signal is much weaker and is just below 2200 cm-1 .

  43. A Nitrile IR Spectrum =>

  44. Summary of IR Absorptions

  45. Interpretation of the IR spectra (红外光谱解析) 红外光谱主要是获得有机物官能团信息. (1) 吸收峰的位置、强度和形状。 (2)先特征峰,后一般峰。先强峰,后次强峰,再中强峰,同时注意峰形,宽,尖,单峰或双峰。相关峰。 与标准图谱对照可以确认化合物。

  46. C5H10O 1716 3-pentanone CH3CH2COCH2CH3 Diethyl ketone

More Related