Thermodynamique et mod les thermiques
This presentation is the property of its rightful owner.
Sponsored Links
1 / 37

Thermodynamique et modèles thermiques PowerPoint PPT Presentation


  • 90 Views
  • Uploaded on
  • Presentation posted in: General

Thermodynamique et modèles thermiques. Guy Gauthier Été 2010. Notions d’énergie. Énergie totale. Niveau macroscopique. Énergie cinétique. Énergie potentielle. Niveau microscopique. Énergie interne. L’énergie totale. L’énergie totale d’un système est définie comme étant la somme de:

Download Presentation

Thermodynamique et modèles thermiques

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Thermodynamique et mod les thermiques

Thermodynamique et modèles thermiques

Guy Gauthier

Été 2010


Notions d nergie

Notions d’énergie

Énergie totale

Niveau macroscopique

Énergie cinétique

Énergie potentielle

Niveau microscopique

Énergie interne


L nergie totale

L’énergie totale

  • L’énergie totale d’un système est définie comme étant la somme de:

    • L’énergie interne;

    • L’énergie cinétique;

    • L’énergie potentielle.


Nergie cin tique

Énergie cinétique

  • L’énergie cinétique est associée au mouvement.

  • Elle s’exprime par l’équation suivante:


Nergie potentielle

Énergie potentielle

  • L’énergie potentielle est associée à de l’énergie stockée et qui peut être utilisée.

  • Elle s’exprime par l’équation suivante:


L nergie interne

L’énergie interne

Énergie interne

Niveau microscopique

Agitation thermique

Température

Chimie

Énergie de liaison

Énergie nucléaire


Ainsi

Ainsi…

  • Mécanique des fluides:

    • Énergie au niveau macroscopique;

  • Réactions chimiques:

    • Énergie au niveau microscopique;

  • Transfert de chaleur:

    • Agitation thermique.


Nergie par unit de masse

Énergie par unité de masse

  • Dans certains modèles il peut être plus facile de représenter l’énergie par unité de masse.

    • Ainsi:

      • Énergie totale:

      • Énergie cinétique:

      • Énergie potentielle:


Hypoth se simplificatrice

Hypothèse simplificatrice

  • Pour la majorité des procédés chimiques, les termes d’énergie cinétique et d’énergie potentielle sont négligés.

    • Leur contribution est de 2 ordres de grandeur inférieure à l’énergie interne.


Vers la d finition de l enthalpie

Vers la définition de l’enthalpie

  • Transformation isobare (P=cte):

    • Échange de chaleur et travail Qp;

    • Force de pression Wf,p.

  • Premier principe:

    • Variation d’énergie interne:


A pression constante

A pression constante

  • Travail des forces de pression:

  • Ainsi:

Enthalpie


Enthalpie

Enthalpie

  • Dans le cas des fluides, on utilise l’enthalpie pour représenter l’énergie.

  • Elle se définit par:

  • Par abus de langage:

    • Chaleur  enthalpie.


Enthalpie1

Enthalpie

  • Par mole:

  • Par unité de masse:


Exemple

Comment utiliser ces informations en modélisation

Exemple


Exemple1

Exemple

  • Soit un réservoir isolé thermiquement pour éviter les pertes. Ce réservoir est traversé par un liquide qui sera chauffé par un élément chauffant.

    • Ce liquide sera mélangé pour assurer que la température soit uniforme dans le réservoir.


Bilan mati re

Bilan matière

  • Masse dans le réservoir = masse entrante – masse sortante :

    • Si changement de densité négligeable et changement de volume nul :


Bilan nerg tique

Bilan énergétique

  • Accumulation d’énergie :

Énergie totale

- Liquide entrant

Énergie totale

- Liquide sortant

Énergie injectée par l’élément chauffant

Travail fait sur le système


Bilan nerg tique1

Bilan énergétique

  • Accumulation d’énergie :

  • L’énergie cinétique et l’énergie potentielle sont négligées:

Énergie interne


Le travail fait sur le syst me

Le travail fait sur le système

  • Combinaison de l’énergie du mélangeur et de l’énergie pour amener le liquide dans le réservoir et le sortir du réservoir:


Le travail fait sur le syst me1

Le travail fait sur le système

  • Combinaison de l’énergie du mélangeur et de l’énergie pour amener le liquide dans le réservoir et le sortir du réservoir:

  • Donc :

Enthalpie


Enthalpie totale

Enthalpie totale

  • Équation de l’enthalpie totale :

  • Donc, en isolant l’énergie interne et en dérivant :


Simplification

Simplification

  • Or:

  • Si le volume est constant et que la variation de la pression moyenne peut être négligée, alors :


Simplification suite

Simplification (suite)

  • Ce qui mène à :


Simplification suite1

Simplification (suite)

  • Comme la densité est supposée constante et les débits sont les mêmes (car volume constant), alors :


Enthalpie totale revisit e

Enthalpie totale revisitée

  • Le terme d’enthalpie totale est :

  • S’il n’y a pas de changement de phase :

Température de référence


Retour sur le bilan nerg tique

Retour sur le bilan énergétique

  • Le terme d’enthalpie totale est :

    • Puisque la densité et le volume sont constants :


Retour sur le bilan nerg tique suite

Retour sur le bilan énergétique (suite)

  • Puis :

  • Négligeant l’effet du mélangeur :

1


En r gime permanent

En régime permanent

  • Température de sortie en régime permanent :

    • On bâtira le modèle sur l’écart entre le système et son régime permanent.

    • Note: Ti est assumé constant.

2


Mod le bas sur les variations

Modèle basé sur les variations

  • Combinant et la température de sortie en régime permanent est:

  • En posant :

1

2


Passage aux quations d tat

Passage aux équations d’état

  • Alors:


Transformation de laplace

Transformation de Laplace

  • Cela donne :

    • Système de 1er ordre (normal car il n’y avait qu’un seul état).


Et si t i n tait pas constant perturbation

Et, si Ti n’était pas constant (perturbation)

  • On aurait alors eu en régime permanent:

  • Ce qui aurait mené à :


Mod le am lior

Modèle amélioré

  • Posant:

  • Les équations du modèle deviennent :


Transformation de laplace1

Transformation de Laplace

  • Cela donne :


Exemple num rique

Exemple numérique

  • Si F = 10 pi3/min, V = 20 pi3, ρ = 62.5 lbs/pi3, cp = 1 BTU/lb/°F, alors on fait face à ce système :


Simulation

Simulation

  • Résultats:


On reverra ces quations thermiques bient t

Qu’en sera-t-il des réactions chimiques endothermiques ou exothermiques ?

On reverra ces équations thermiques bientôt !!!


  • Login