1 / 46

Workshop at Institute for Theoretical Physics, University of Wroclaw December 5. & 6. 2009

NICA Accelerator Complex N uclotron -based I on C ollider f A cility. O. Kozlov for NICA team. Workshop at Institute for Theoretical Physics, University of Wroclaw December 5. & 6. 2009. O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 200 9. Contents

brandi
Download Presentation

Workshop at Institute for Theoretical Physics, University of Wroclaw December 5. & 6. 2009

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. NICAAccelerator Complex Nuclotron-based IonColliderfAcility O. Kozlov forNICA team Workshop at Institute for Theoretical Physics, University of Wroclaw December 5. & 6. 2009

  2. O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 Contents Introduction: 1. NICA scheme & layout 2. Heavy ions in NICA 2.1. Operation regime and parameters 2.2. Collider 3. Polarized particle beams inNICA 4. NICA project status and nearest plans Conclusion

  3. The NICA Project goals formulated in NICA CDR are the following: 1a) Heavy ion colliding beams 197Au79+ x 197Au79+ at sNN = 4  11 GeV (1  4.5 GeV/u ion kinetic energy ) at Laverage= 11027 cm-2s-1 (at sNN = 9 GeV) 1b) Light-Heavy ion colliding beams of the same energy range and luminosity 2) Polarized beams of protons and deuterons: pp sNN = 12  25 GeV (5  12.6 GeV kinetic energy ) dd sNN = 4  13.8 GeV (2  5.9 GeV/u ion kinetic energy ) O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

  4. 1. NICA scheme & layout MPD 2.3 m Collider C = 251 m 4.0 m KRION-6T & HILac Booster Synchrophasotron yoke “Old” linac Spin Physics Detector (SPD) Beam transfer line Existing beam lines (Fixed target exp-s) Nuclotron O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

  5. 1. NICA scheme & layout (Contnd) “Old” Linac LU-20 Booster KRION + “New” HILAC Nuclotron Collider MPD SPD Beam dump O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

  6. 2. Heavy ions in NICA Nuclotron (45 Tm) injection of one bunch of 1.1×109 ions, acceleration up to 14.5 GeV/u max. IP-1 Two superconducting collider rings IP-2 O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 Bunch compression (RF phase jump) 2.1. Operation regime and parameters Injector: 2×109 ions/pulse of 197Au32+ at energy of 6.2 MeV/u Booster (25 Tm) 1(2-3) single-turn injection, storage of 2 (4-6)×109, acceleration up to 100 MeV/u, electron cooling, acceleration up to 600 MeV/u Collider (45 Tm) Storage of 17 (20) bunches  1109 ions per ring at 14.5 GeV/u, electron and/or stochastic cooling Stripping (80%) 197Au32+  197Au79+ 2х17 (20) injection cycles

  7. 2. Heavy ions in NICA (Contnd) 2.1. Operation regime and parameters Bunch parameters dynamics in the injection chain O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

  8. 2. Heavy ions in NICA (Contnd) 2.1. Operation regime and parameters Bunch compression in Nuclotron A.Eliseev Phase space portraits of the bunch Bunch rotation by “RF amplitude jump” 15  120 kV E – E0 , 2 GeV/div 2 1 , 10 deg./div O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

  9. 2. Heavy ions in NICA (Contnd) 2.1. Operation regime and parameters Bunch compression in Nuclotron Phase space portraits of the bunch (RF “phase jump”  = 1800) E – E0 , 2 GeV/div A.Eliseev , 50 deg./div _r.m.s. 5 deg./div. (1 deg.  0.7 m) E_r.m.c. 200 MeV/div. _r.m.s. 0.5 eVsec/div time, 0.1 sec/div. O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

  10. 2. Heavy ions in NICA (Contnd) 34 injection cycles to Collider rings of 1109 ions 197Au79+ per cycle 1.71010 ions/ring 2.1. Operation regime and parameters Time Table of The Storage Process Booster magnetic field B(t), arb. units t, [s] Nuclotron magnetic field B(t), arb. units t, [s] O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 electron cooling Extraction, stripping to 197Au79+ 1 (2-3) injection cycles, electron cooling (?) bunch compression, extraction injection

  11. 2. Heavy ions in NICA (Contnd) I.Meshkov, O.Kozlov, V.Mikhailov, A.Sidorin, A.Smirnov, N.Topilin 3.2. Collider E_cooler Spin rotator MPD S_Cool PU x, y, long 10 m Upper ring Injection channels Long. kicker x,y kicker SPD RF Beam dump O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

  12. 2. Heavy ions in NICA (Contnd) 2.2. Collider General Parameters O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

  13. 2. Heavy ions in NICA (Contnd) 2.2. Collider General parameters (Contnd) O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

  14. 2. Heavy ions in NICA (Contnd) 2.2. Collider General parameters (Contnd) Collider beam parameters and luminosity O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

  15. 2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) • Two injection schemes are considered: 1) bunch by bunch injection, 17 bunches: • bunch number is limited by kicker pulse duration, • bunch compression in Nuclotron is required (!) • Electron and/or stochastic cooling is used for luminosity preservation. O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 Under development by Prof. T.Katayama (retired from Tokyo Univ.) • 2) Injection and storage with barrier bucket technique and coolingof a coasting (!) beam, 20 bunches, • bunch number is limited by interbunch space in IP straight section, • bunch compression in Nuclotron is NOT required (!) • Electron and/or stochastic cooling for storage and luminosity preservation, bunch formation after storage are required.

  16. 3. Heavy ions in NICA (Contnd) 3.2. Collider(Contnd) Barrier Bucket Method (Contnd) Ion trajectory in the phase space (p, ) (p)ion V(t) p (p)separatrix Cavity voltage  2 0 Unstable phase area (injection area) _stack O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 Cooling is ON Stack The method was tested experimentally at ESR (GSI) with electron cooling (2008). NICA: Trevolution = 0.85  0.96 s, VBB  16 kV

  17. 2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) Collider luminosity vs Ion Energy Two outmost cases at QLasslett = Const : 1) L(E)= Const ; 2) Nion(E) = Const  . 10 1.0 0.1 0.01 L(E) [1E27 cm-2∙s-1] 1.6 1.4 1.2 1.0 0.8 N_ion/bunch vs Energy [1E9] 10 1.0 0.1 _norm(E) [∙mm∙mrad] ! 0.5 1.5 2.5 3.5 4.5 E, GeV/u 0.5 1.5 2.5 3.5 4.5 E, GeV/u 0.5 1.5 2.5 3.5 4.5 E, GeV/u O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

  18. 2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) IBS Heating and cooling –luminosity evolution at electron cooling B [kG] 8 6 4 2 6 Luminosity [1E27 cm-2∙s-1] 4 2 0 BETACOOL simulation ! Te = 10 eV Parameters ion beam: 197Au79+ at 3.5 GeV/u, initial =0.5 ∙mm∙mrad, (p/p) = 1∙10-3 electron beam: Ie = 0.5 A, re = 2 mm, Te|| = 5 meV;  = 0.024 (6 m/250 m) O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 Conclusion: Electron magnetization is much more preferable

  19. 2. Heavy ions in NICA (Contnd) What is “old” and what is new? see below O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 2.2. Collider: the problems to be solved • Collider SC dipoles with max B up to 4 T, • “Flexible” lattice (transition energy change with energy), • RF parameters (related problem), • Single bunch stability, • Vacuum chamber impedance and multibunch stability, • Electron clouds (vacuum chamber coating?), • Stochastic cooling of bunched ion beam, • Electron cooling at electron energy up to 2.5 MeV.

  20. 3. Polarized particle beams inNICA Spin rotator: “Full Siberian snake” Longitudinal polarization formation Yu.Filatov, I.Meshkov MPD B B SPD O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 Upper ring “Siberian snake”: Protons, 1  E  12 GeV  (BL)solenoid 50 T∙m Deuterons, 1  E  5 GeV/u  (BL)solenoid  140 T∙m

  21. 3. Polarized particle beams inNICA (Contnd) Longitudinal polarization formation (Contnd) MPD SPD “Full Siberian snake” Lower ring B O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

  22. 3. Polarized particle beams inNICA (Contnd) Longitudinally polarized particles  injection S From Nuclotron B ~ 900 Spin rotator O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 Protons, 1  E  12 GeV  (BL)dipole 3 T∙m Deuterons, 1  E  5 GeV/u  (BL)dipole  5.8 T∙m

  23. 3. Polarized particle beams inNICA (Contnd) Transverse polarization formation B (450) MPD SPD Dipole “450” Lower ring B Dipole “450” B (450) O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

  24. 3. Polarized particle beams inNICA (Contnd) Parameters of polarized proton beams in collider O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

  25. 3. Polarized particle beams inNICA (Contnd) Polarized particle acceleration in Nuclotron: Spin resonances Q – betatron and spin precession tunes, k, m – integers, p – number of superperiods (8 for Nuclotron) Power of the Spin resonances: P1,2 ~ 103∙P3,4 O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

  26. 3. Polarized particle beams inNICA (Contnd) Polarized proton acceleration in Nuclotron: Crossing of spin resonances Yu.Filatov y s x Fast spin rotator y y y y y Bs Bx Bs Bx Bx s s s x x Qs - Qres Spin tune dynamics t O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 x y x -y -2∙x QS = x∙y/2 per 1 turn Protons, 12 GeV, Q ~ 0.01, t = 50 s x ~ 0.2, BxLx = 0.18 T∙m, y ~ 0.2,Bs∙Ls = 4.7 T∙m,

  27. 4.NICA project status and plans January 2008 NICA CDR MPD LoI January 2009 NICA CDR (Short version) Conceptual Design Report of Nuclotron-based Ion Collider fAcility (NICA) (Short version) O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

  28. 4.NICA project status and plans (Contnd) August 2009 NICA TDR (volumes I & II) Ускорительно-накопительный комплекс NICA (Nuclotron-based Ion Collider fAcility) Технический проект Том I Ускорительно-накопительный комплекс NICA (Nuclotron-based Ion Collider fAcility) Технический проект Том II Дубна,2009 Дубна,2009 O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

  29. 4.NICA project status and plans (Contnd) Approved by Director of JINR academicianA.N.Sisakian ____________________ Nuclotron-based Ion Collider fAcility (NICA) "____"2009 г. Technical Design Report Project leaders: A.Sisakian,A.Sorin TDR has been developed by the NICA collaboration: JINR Physicists and engineers: N.Agapov, E.Ahmanova, V.Alexandrov, A.Alfeev, O.Brovko, A.Butenko, E.D.Donets, E.E.Donets, A.Eliseev, A.Govorov, I.Issinsky, E.Ivanov, V.Karpinsky, V.Kekelidze, G.Khodzhibagiyan, A.Kobets, V.Kobets, A.Kovalenko, O.Kozlov, A.Kuznetsov, V.Mikhailov, V.Monchinsky, A.Sidorin, A.Smirnov, A.Olchevsky, R.Pivin, Yu.Potrebennikov, A.Rudakov, A.Smirnov, G.Trubnikov, V.Shevtsov, B.-R.Vasilishin, V.Volkov, S.Yakovenko, V.Zhabitsky Designers: V.Agapova, G.Berezin, V.Borisov, V.Bykovsky, A.Bychkov, T.Volobueva, E.Voronina, S.Kukarnikov, T.Prakhova, S.Rabtsun, G.Titova, Yu.Tumanova, A.Shabunov, V.Shokin IHEP, Protvino O.Belyaev, Yu.Budanov, S.Ivanov, A.Maltsev, I.Zvonarev, INRRAS, Troitsk V.Matveev, A.Belov, L.Kravchuk Budker INP, Novosibirsk V.Arbuzov, Yu.Biriuchevsky, S.Krutikhin, G.Kurkin, B.Persov, V.Petrov, A.Pilan Chief engineer of the ProjectV.Kalagin, Chief designer of the ProjectN.Topilin Editors:I.Meshkov, A.Sidorin O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

  30. 4.NICA project status and plans (Contnd) Since publication of the 1-st version of the NICA CDR The Concept was developed, the volumes I and II of the TDR have been completed: Volume I – Part 1, General description Part 2, Injector complex Volume II – Part 3, Booster-Synchrotron A brief review of the Project, its status and plans of realization are presented here. O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

  31. 4.NICA project status and plans 2009 2010 2011 2012 2013 2014 2015 KRION LINAC + trans. channel Booster: magnetic system Booster + trans. channel Nuclotron-M Nuclotron-NICA Transfer channel to Collider Collider Diagnostics PS systems Control systems Infrastructure R & D design Manufctrng + mounting mountg+commssiong comms/operatn operation O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

  32. 4. NICA project status and plans E.D.Donets E.E.Donets 4.1. Injector KRION - Cryogenic ion source of “electron-string” type developed by E.Donets group at JINR. It is aimed to generation of heavy multicharged ions (e.g.197Au32+). KRION-6T Cryostat & vac. chamber HILAC – Heavy ion linac RFQ + Drift Tube Linac (DTL), under design and construction (O.Belyaev & the Team, IHEP, Protvino). RFQ Electrodes Sector H-cavity of “Ural” RFQ DTL (prototype) 2H cavities of "Ural" RFQ (prototype) O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 To be commissioned in 2013. To be commissioned in 2013.

  33. 4. NICA project status and plans A.Butenko V.Mikhailov G.Khodjibagiyan N.Topilin 2.3 m Vladimir I. Veksler 4.0 m O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 4.2. Booster “Nuclotron-type” SC magnets for Booster Superconducting Booster in the magnet yoke of The Synchrophasotron Nuclotron Synchrophasotron yoke Booster • B = 25 Tm, Bmax = 1.8 T • 3 single-turn injections • 2) Storage and electron cooling of 8×109197Au32+ • 3) Acceleration up to 600 MeV/u • 4) Extraction & stripping Dismounting is in progress presently To be commissioned in 2013.

  34. 4. NICA project status and plans 4.2. Booster (Contnd) O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

  35. 4. NICA project status and plans 4.2. Booster (Contnd) Heavy ion Linac Beam injection Electron cooling system 2.3 m Slow extraction RF system 4.0 m Fast extraction Transfer to Nuclotron Experimental area bld. 1 B O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

  36. 4. NICA project status and plans Booster parameters Circumference 214 m Max B 27 T·m Lattice type FODO Superperiods 4 Periods 24 Strait sections 2 x 8,6 m Dipol magnets 40 x 2 m Maximum dipole field 1,8 T Quadrupole magnets 48 x 0.4 m Vacuum 10-11 Torr O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 4.2. Booster (Contnd)

  37. 4. NICA project status and plans 5.2. Booster (Contnd) SC hollow cable O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 SC magnet technology

  38. 4.2. Booster (Contnd) 4. NICA project status and plans E.Ahmanova, I.Meshkov, A.Smirnov, N.Topilin, Yu.Tumanova, S.Yakovenko Electron cooling system of the Booster collector “warm” solenoids electron gun cryogenic shield superconducting solenoids O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 superconducting solenoids

  39. 4. NICA project status and plans 4.3. Nuclotron-NICA G.Trubnikov & the Team • To be designed, • constructed and commissioned: • Injection system (new HILAC) • RF system – new version with bunch compression • 3.Dedicated diagnostics • 4.Single turn extraction with fine synchronization • 5.Polarized protons acceleration in Nuclotron To be commissioned in 2013. O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

  40. 4. NICA project status and plans 4.4. Collider Double ring collider;(B)max = 45 Tm, Bmax = 4 T A.Kovalenko G.Khodjibagiyan “Twin magnets” for NICA collider rings “Twin” dipoles “Twin” quadrupoles 1 – Cos coils, 2 – “collars”, 3 – He header, 4 – iron yoke, 5 – thermoshield, 6 – outer jacket O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 To be commissioned in 2014.

  41. 4. NICA project status and plans 4.4. Collider Electron cooling system of the Collider Max electron energy, MeV 2.5 Max electron current, A 0.5 Solenoid magnetic field, T 0.3 “Magnetized” electron beam Solenoid type: “warm” at acceleration columns superconducting at transportation and cooling sections HV generator: Dynamitron type I.Meshkov A.Smirnov S.Yakovenko 3 m 6 m O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 To be commissioned in 2014. • Under development in collaboration with • All-Russian Institute for • Electrotechnique (Moscow) • FZ Juelich • Budker INP

  42. 4. NICA project status and plans GSI/JINR/BNL 2005 - 2009 RoundTable DiscussionsI, II, III, IV JINR, Dubna, 2005, 2006, 2008 http://theor.jinr.ru/meetings/2008/roundtable/ IHEP (Protvino) InjectorLinac Budker INP • Booster RF system • Booster electron cooling • Collider RF system • Collider SC magnets (expertise) • HV electron cooler for collider • Electronics (?) FZ Jűlich (IKP) HV Electron cooler Stoch. cooling Fermilab HV Electron cooler Beam dynamics Stoch. cooling BNL (RHIC) Electron & Stoch. Cooling GSI/FAIR SC dipoles for Booster/SIS-100 SC dipoles for Collider O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009 4.5. NICA Collaboration All-Russian Institute for Electrotechnique HVElectron cooler ITEP: Beam dynamics in the collider Corporation “Powder Metallurgy” (Minsk, Belorussia): Technology of TiN coating of vacuum chamber walls for reduction of secondary emission

  43. Thank you for your attention! O. Kozlov NICA Accel. Complex Workshop at Univ. of Wroclaw Dec. 5-6, 2009

  44. “Collider 2T” From Nuclotron MPD SPD Collider: C_Ring 380 м Dipoles 2 Тл 25 m Luminosity?

  45. “Collider 2T” (Contnd) G.Khodjibagiyan et al. Dipoles 2 Тл

  46. Интерес стран к работам на Нуклотроне Внутренние пучки ETA-NUCLEI, DELTA-2, LNS Выведенные пучки ALPOM, BECQUEREL, DELTA-SIGMA, ENERGY & TRANSMUTATION, FAZA-3, GAMMA-2, GIBS, MARUSYA, NIS, KRISTAL, TPD, STRELA, Med-Nuclotron, Radiobiological investigations

More Related