1 / 20

Indistinguishability of emitted photons from a semiconductor quantum dot in a micropillar cavity

Indistinguishability of emitted photons from a semiconductor quantum dot in a micropillar cavity. S. Varoutsis LPN Marcoussis. S. Laurent, E. Viasnoff, P. Kramper & M. Gallard L. Le Gratiet, C. Mériadec, L. Ferlazzo I. Sagnes, A. Lemaître, I. Robert-Philip, I. Abram. Motivation.

bowen
Download Presentation

Indistinguishability of emitted photons from a semiconductor quantum dot in a micropillar cavity

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Indistinguishability of emitted photons from a semiconductor quantum dot in a micropillar cavity S. Varoutsis LPN Marcoussis S. Laurent, E. Viasnoff, P. Kramper & M. Gallard L. Le Gratiet, C. Mériadec, L. Ferlazzo I. Sagnes, A. Lemaître, I. Robert-Philip, I. Abram

  2. Motivation • Production of indistinguishable single photons • Toolbox for quantum optics experiments • Linear optics quantum computation Photon-based two-qubit gates

  3. Single quantum dots InAs GaAs 3 nm

  4. Laser at 888nm T ~4K 0 Spectroscopy of single quantum dots E “Artificial”atoms GaAs Wetting layer • Sharp spectral lines at low temperature (< 30 meV) • Dephasing mechanisms (phonon, electrostatic) Dot GaAs InAs 1400 1200 Emission of single photons 1000 800 • Pumping on an excited state of the exciton : one e-h pair • Spectral filtering of the X line Intensity (arb. units) 600 InAs 400 200 900 910 920 930 940 950 960 Wavelength (nm)

  5. T ~ 12.2 ns Start T 3T T 2T 3T Stop 3 Nb of coincidences 2 1 Delay t T 0 4T 3T 2T Generation of single photons Start Detector 50/50 Beamsplitter 1 photon Stop Detector 1,0 0,8 0,6 g(2)(t) 0,4 0,2 0,0 -20 -10 0 10 20 Delay t (ns)

  6. time Pump pulse Pump pulse Pump pulse Indistinguishable Photons Purest state of light • Characteristics • Same polarization mode • Same spatial mode • Same spectral-temporal mode Negligible jitter (trelax ~10 ps) compared with pulse duration No phase diffusion (T2) during the pulse duration

  7. Indistinguishable Photons • Key parameters : For indistinguishable photons : T2 = 2 T1 Coherence time :T2 Dephasing (phonons, electrostatic...) Pure dephasing time T2* Lifetime : T1 1 t ~ 300 ps T1 ~ 1.2 ns T2 = 1/T2* + 1/2T1

  8. Indistinguishable Photons - T1 shortening • Cavity effects (Purcell) Cavity Quantum Electrodynamics (CQED) Control of the interaction We modify the EM environment EM modes of a microcavity We use an isolated emitter X transition of a single QD

  9. g 3 Ql03g1 F = = + g0 4p2V n3 g0 Indistinguishable Photons - T1 shortening • Cavity effects (Purcell) Enhanced spontaneous emission into the cavity mode Leakage spontaneous emission into free space 120 104 100 80 103 60 F Q 40 102 20 0 10 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 Diameter (mm)

  10. Indistinguishable Photons 3 A single photon on a beamsplitter 4 1 │11> │02> r │13> │04> + t │03> │14> 2 │01> │12> t │13> │04> - r │03> │14> A single photon on each input arm of a beamsplitter t2│13> │14> - r2 │13> │14> + rt │23> │04> - rt │03> │24> │11> │12> Both photons go the same way : «coalescence» into a two-photon state

  11. Experimental set-up Indistinguishable Photons Stop Time-interval counter 2 ns Spectro- -meter Spectro- -meter Start 2 ns Sample

  12. Experimental set-up Number of events -2 0 -4 2 4 dt (ns) Indistinguishable Photons Photon 2 Peak at dt=0 (Long-Short) Photon 1 Peak at dt=4 ns (Short-Long) Photon 1 4 ns Photon 2 Peak at dt=2 ns (Long-Long or Short-Short) 2 ns Photon 2 Photon 1

  13. Experimental set-up Indistinguishable Photons For indistinguishable photons Peak at dt=0 (Long-Short) Photon 2 Photon 1 + Number of events -2 0 -4 2 4 dt (ns)

  14. Indistinguishable Photons 600 500 400 Number of events 300 200 100 0 -20 -10 0 10 20 Photon separation dt (ns) Strongly reduced probability (ideally 0) of simultaneous detection of two photons (i.e. one on each output arm) The photonscoalesce two-photon state

  15. 1,0 T1 ~ 90ps 6000 0,8 5000 0,6 4000 Intensity (arb. units) 3000 0,4 Visibility 2000 0,2 1000 0,0 0 -40 0 40 80 120 160 -200 0 200 400 600 800 Time (ps) Time (ps) Direct measurement of T1 and T2 T2 ~ 100ps

  16. Photon 2 t Photon 1 Theoretical prediction for: T1 = 90ps and T2 = 100ps Experimental Data Indistinguishable Photons J. Bylander, I. Robert-Philip, and I. Abram, Eur. Phys. J. D 22, (2003) 295-301 • Mandel dip 1,0 0,8 0,6 g(2) (t) 0,4 0,2 0,0 -300 -200 -100 0 100 200 300 Time delay t (ps) T1 ~ 90ps T2 ~ 100ps and T2* ~ 225ps F ~15 & Coalescence efficiency ~ 55%

  17. 1,0 0,8 0,6 g(2) (t) 0,4 0,2 0,0 -400 -200 0 200 400 Delay t (ps) Indistinguishable Photons • Mandel dip T1 ~ 60 - 110 ps T2* ~ 200 - 660 ps F ~15-25 Best coalescence efficiency ~ 76%

  18. Resonant condition of Purcell effect 140 24 20 120 16 Lifetime (ps) 100 12 Purcell Factor 8 80 4 60 0 -4 -2 0 0 2 2 4 Detuning (Angstroms)

  19. Temperature dependence Detuning (Å) 3.3 2.9 2.8 0 -2.2 1.0 1.0 500 500 400 400 0.8 0.8 * * T T 2 2 g g 300 300 0.6 0.6 (2) (2) Characteristic times (ps) (0) (0) 200 200 0.4 0.4 Characteristic 100 100 0.2 0.2 T T 1 1 0.0 0.0 0 0 0 0 10 10 20 20 30 30 40 40 50 50 Temperature (K)

  20. Conclusions • Generation of indistinguishable single photons • Toolbox for quantum optics experiments • Engineering of nanosources for photon-based quantum information processing • Future prospect : • Generation of entangled photons to implement more sophisticated functionalities of quantum information processing (teleportation, quantum logic...)

More Related