1 / 50

Status of The NICA Technical Design Report N uclotron-based I on C ollider f A cility

Round Table Workshop IV Searching for the M ixed P hase of S trongly I nteracting M atter a t the NICA Physics at NICA. Status of The NICA Technical Design Report N uclotron-based I on C ollider f A cility. I.Meshkov for NICA Collaboration. JINR, Dubna September 9 – 12, 2009.

Download Presentation

Status of The NICA Technical Design Report N uclotron-based I on C ollider f A cility

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Round Table Workshop IV Searching for the Mixed Phase of Strongly Interacting Matter atthe NICA Physics at NICA Status of The NICATechnical Design Report Nuclotron-basedIonColliderfAcility I.Meshkov forNICA Collaboration JINR, Dubna September 9 – 12, 2009

  2. Contents Introduction: Mixed phase of strongly interacting matter and the NICA project Development of the NICA Concept and Technical Design Report 1. NICA scheme & layout 2. Heavy ions in NICA 2.1. Operation regime and parameters 2.2. Collider 3. Polarized particle beams inNICA 4. NICA project status and nearest plans 4.1. Injector 4.2. Booster 4.3. Nuclotron-NICA 4.4. Collider 4.5. NICA Collaboration Conclusion Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  3. Introduction: Mixed phase of strongly interacting matter and the NICA project GSI/JINR/BNL 2005 - 2009 n/n_nuclear (n_nuclear = 0.16 fm-3) Nuclei Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 NICA (2006) critRHIC (2009)

  4. Introduction: Development of the NICA Concept and TDR January 2008 NICA CDR MPD LoI January 2009 NICA CDR (Short version) Conceptual Design Report of Nuclotron-based Ion Collider fAcility (NICA) (Short version) Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  5. Ускорительно-накопительный комплекс NICA (Nuclotron-based Ion Collider fAcility) Технический проект Том I Ускорительно-накопительный комплекс NICA (Nuclotron-based Ion Collider fAcility) Технический проект Том II Дубна,2009 Дубна,2009 Introduction: Development of the NICA Concept and TDR August 2009 NICA TDR (volumes I & II) Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  6. Introduction: Development of the NICA Concept and TDR Approved by Director of JINR academicianA.N.Sisakian ____________________ Nuclotron-based Ion Collider fAcility (NICA) "____"2009 г. Technical Design Report Project leaders: A.Sisakian,A.Sorin TDR is being developed by the NICA collaboration: JINR Physicists and engineers: N.Agapov, E.Ahmanova, V.Alexandrov, A.Alfeev, O.Brovko, A.Butenko, E.D.Donets, E.E.Donets, A.Eliseev, A.Govorov, I.Issinsky, E.Ivanov, V.Karpinsky, V.Kekelidze, G.Khodzhibagiyan, A.Kobets, V.Kobets, A.Kovalenko, O.Kozlov, A.Kuznetsov, V.Mikhailov, V.Monchinsky, A.Sidorin, A.Smirnov, A.Olchevsky, R.Pivin, Yu.Potrebennikov, A.Rudakov, A.Smirnov, G.Trubnikov, V.Shevtsov, B.-R.Vasilishin, V.Volkov, S.Yakovenko, V.Zhabitsky Designers: V.Agapova, G.Berezin, V.Borisov, V.Bykovsky, A.Bychkov, T.Volobueva, E.Voronina, S.Kukarnikov, T.Prakhova, S.Rabtsun, G.Titova, Yu.Tumanova, A.Shabunov, V.Shokin IHEP, Protvino O.Belyaev, Yu.Budanov, S.Ivanov, A.Maltsev, I.Zvonarev, INRRAS, Troitsk V.Matveev, A.Belov, A.Feshchenko, L.Kravchuk, L.Nechaeva, A.Turbabin, V.Zubets Budker INP, Novosibirsk V.Arbuzov, Yu.Biriuchevsky, S.Krutikhin, G.Kurkin, B.Persov, V.Petrov, A.Pilan Chief engineer of the ProjectV.Kalagin, Chief designer of the ProjectN.Topilin Editors:I.Meshkov, A.Sidorin Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  7. Introduction: Development of the NICA Concept and TDR Since publication of the 1-st version of the NICA CDR The Concept was developed and the volumes I and II of the TDR have been completed: Volume I – Part 1, General description Part 2, Injector complex Volume II – Part 3, Booster-Synchrotron A brief review of the Project, its status and plans of realization are presented here. Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  8. Introduction: Development of the NICA Concept and TDR The Project goals formulated in NICA CDR are the following: 1a) Heavy ion colliding beams 197Au79+ x 197Au79+ at sNN = 4  11 GeV (1  4.5 GeV/u ion kinetic energy ) at Laverage= 11027 cm-2s-1 (at sNN = 9 GeV); 1b) Light-Heavy ion colliding beams of the energy range and luminosity (“the reference” collider mode); 2) Polarized beams of protons and deuterons: pp sNN = 12  25 GeV (5  12.6 GeV kinetic energy ), dd sNN = 4  13.8 GeV (2  5.9 GeV/u ion kinetic energy ). Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  9. 1. NICA scheme & layout 2.3 m 4.0 m Booster Spin Physics Detector (SPD) Synchrophasotron yoke Nuclotron Existing beam lines (solid target exp-s) MPD Collider C = 251 m Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  10. 1. NICA scheme & layout (Contnd) “Old” Linac LU-20 Booster KRION + “New” HILAC Nuclotron Collider MPD Beam dump SPD Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  11. 2. Heavy ions in NICA 2.1. Operation regime and parameters Nuclotron (45 Tm) injection of one bunch of 1.1×109 ions, acceleration up to 14.5 GeV/u max. IP-1 Two superconducting collider rings IP-2 Bunch compression (RF phase jump) Injector: 2×109 ions/pulse of 197Au32+ at energy of 6.2 MeV/u Booster (25 Tm) 1(2-3) single-turn injection, storage of 2 (4-6)×109, acceleration up to 100 MeV/u, electron cooling, acceleration up to 600 MeV/u Collider (45 Tm) Storage of 17 (20) bunches  1109 ions per ring at 14.5 GeV/u, electron and/or stochastic cooling Stripping (80%) 197Au32+  197Au79+ 2х17 (20) injection cycles Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  12. 2. Heavy ions in NICA (Contnd) 2.1. Operation regime and parameters Bunch compression in Nuclotron A.Eliseev Bunch rotation by RF amplitude “jump” 15  120 kV Phase space portraits of the bunch 2 1 E – E0 2 GeV/div E – E0 2 GeV/div , 10 deg./div , 10 deg./div Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  13. 2. Heavy ions in NICA (Contnd) 2.1. Operation regime and parameters Bunch compression in Nuclotron Bunch rotation by RF phase “jump”  = 1800 Phase space portraits of the bunch E – E0 , 2 GeV/div A.Eliseev E – E0 2 GeV/div , 50 deg./div _r.m.s. 5 deg./div. (1 deg.  0.7 m) E_r.m.c. 200 MeV/div. _r.m.s. 0.5 eVsec/div time, 0.1 sec/div. Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  14. 2. Heavy ions in NICA (Contnd) 2.1. Operation regime and parameters Bunch parameters dynamics in the injection chain Round Table workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  15. 2. Heavy ions in NICA (Contnd) 34 injection cycles to Collider rings of 1109 ions 197Au79+ per cycle 1.71010 ions/ring 2.1. Operation regime and parameters Time Table of The Storage Process Booster magnetic field B(t), arb. units t, [s] Nuclotron magnetic field B(t), arb. units t, [s] Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 electron cooling Extraction, stripping to 197Au79+ B(t), arb. units bunch compression, extraction 1 (2-3) injection cycles, electron cooling (?) The next injection…, The next cycle… injection

  16. 2. Heavy ions in NICA (Contnd) I.Meshkov, O.Kozlov, V.Mikhailov, A.Sidorin, A.Smirnov, N.Topilin 2.2. Collider Spin rotator E_cooler MPD S_Cool PU x, y, long 10 m Injection channels Long. kicker x,y kicker SPD RF Beam dump Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 Upper ring

  17. 2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) General Parameters Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  18. 2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) General Parameters Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  19. 2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) • Two injection schemes are considered: 1) bunch by bunch injection, 17 bunches: • bunch number is limited by kicker pulse duration • bunch compression in Nuclotron is required (!) • Electron and/or stochastic cooling is used for luminosity preservation Nbunch 17 Nbunch 20 ! ! Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 • 2) Injection and storage with barrier bucket technique and coolingof a coasting (!) beam, 20 bunches, • bunch number is limited by interbunch space in IP straight section • bunch compression in Nuclotron is NOT required (!) • Electron and/or stochastic cooling for storage and luminosity preservation, bunch formation after storage are required.

  20. 2. Heavy ions in NICA (Contnd) 2.2. Collider(Contnd) Barrier Bucket Method Ion trajectory in the phase space (p, ) p (p)separatrix (p)ion (p)ion V(t) Cavity voltage  2 Unstable phase area (injection area) Revolution period In reality RF voltage pulses can be (and are actually) of nonrectangular shape Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 (p)ion (p)ion Cooling is ON 0 Stack The method was tested experimentally at ESR (GSI) with electron cooling (2008). NICA: Trevolution = 0.85  0.96 s, VBB  16 kV

  21. 2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) Collider luminosity vs Ion Energy Two outmost cases at QLasslett = Const : 1) L(E)= Const ; 2) Nion(E) = Const  . 10 1.0 0.1 0.01 L(E) [1E27 cm-2∙s-1] 1.6 1.4 1.2 1.0 0.8 N_ion/bunch vs Energy [1E9] 10 1.0 0.1 _norm(E) [∙mm∙mrad] ! 0.5 1.5 2.5 3.5 4.5 E, GeV/u 0.5 1.5 2.5 3.5 4.5 E, GeV/u 0.5 1.5 2.5 3.5 4.5 E, GeV/u Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  22. 2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) IBS Heating and cooling –luminosity evolution at electron cooling B [kG] 8 6 4 2 6 Luminosity [1E27 cm-2∙s-1] 4 2 0 BETACOOL simulation ! Te = 10 eV Parameters ion beam: 197Au79+ at 3.5 GeV/u, initial =0.5 ∙mm∙mrad, (p/p) = 1∙10-3 electron beam: Ie = 0.5 A, re = 2 mm, Te|| = 5 meV;  = 0.024 (6 m/250 m) Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 Conclusion: Electron magnetization is much more preferable

  23. 2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) Electron cloud effect in the Collider Electron cloud formation criteria The necessary condition (“resonance effect”): The sufficient condition (“multipactor effect”): Here c is ion velocity, Z – ion charge number, b – vacuum chamber radius, re – electron classic radius, lspace – distance between bunches, me– electron mass, c – the speed of light, crit ~ 1 keV – electron energy sufficient for secondary electron generation. ! Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 For NICA parameters (197Au79+ ions) (Nbunch)necessary ~ 7108 (Nbunch)sufficient~ 6109.

  24. 2. Heavy ions in NICA (Contnd) 2.2. Collider (Contnd) Collider: the problems to be solved • Collider SC dipoles with max B up to 4 T, • Lattice and working point “flexibility”, • RF parameters (related problem), • Single bunch stability (“the head-tail effect”, resonances,… ), • Vacuum chamber impedance and multibunch stability, • Electron cloud effect and multibunch stability, • Stochastic cooling of bunched ion beam, • Electron cooling at electron energy up to 2.5 MeV, • … … … . Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  25. 3. Polarized particle beams inNICA Spin rotator: “Full Siberian snake” Longitudinal polarization formation Yu.Filatov, I.Meshkov MPD B B Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 Upper ring SPD “Siberian snake”: Protons, 1  E  12 GeV  (BL)solenoid 50 T∙m Deuterons, 1  E  5 GeV/u  (BL)solenoid  140 T∙m

  26. 3. Polarized particle beams inNICA (Contnd) Longitudinal polarization formation (Contnd) Longitudinal polarization formation MPD SPD “Full Siberian snake” Lower ring B Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  27. 3. Polarized particle beams inNICA (Contnd) Polarized particle beams  injection S From Nuclotron B ~ 900 Spin rotator Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009 Protons, 1  E  12 GeV  (BL)dipole 3 T∙m Deuterons, 1  E  5 GeV/u  (BL)dipole  5.8 T∙m

  28. 3. Polarized particle beams inNICA (Contnd) Parameters of polarized proton beams in collider Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  29. 3. Polarized particle beams inNICA (Contnd) Polarized particle acceleration in Nuclotron: Spin resonances Q – betatron and spin precession tunes, k, m – integers, p – number of superiods (8 for Nuclotron) Power of the Spin resonances: P1,2 ~ 103∙P3,4 Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  30. 3. Polarized particle beams inNICA (Contnd) Polarized proton acceleration in Nuclotron: Fast crossing of spin resonances Yu.Filatov y s x y y y y y Bx Bx Bs Bs Bx s s s x x Qs - Qres Spin tune dynamics t Fast spin rotator x y x -y -2∙x QS = x∙y/2 per 1 turn Protons, 12 GeV, t = 100 s BxLx = 0.18 T∙m, By∙Ly = 4.7 T∙m Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  31. 4.NICA project status and plans 2009 2010 2011 2012 2013 2014 2015 KRION LINAC + trans. channel Booster: magnetic system Booster + trans. channel Nuclotron-M Nuclotron-NICA Transfer channel to Collider Collider Diagnostics PS systems Control systems Infrastructure R & D design Manufctrng + mounting mountg+commssiong comms/operatn operation Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  32. KRION-6T Cryostat & vac. chamber RFQ Electrodes Sector H-cavity of “Ural” RFQ DTL (prototype) 2H cavities of "Ural" RFQ (prototype) 4. NICA project status and plans (Contnd) E.D.Donets E.E.Donets 4.1. Injector KRION - Cryogenic ion source of “electron-string” type developed by E.Donets group at JINR. It is aimed to generation of heavy multicharged ions (e.g.197Au32+). To be commissioned in 2013. HILAC – Heavy ion linac RFQ + Drift Tube Linac (DTL), Status: design and construction (O.Belyaev & the Team, IHEP, Protvino). To be commissioned in 2013. Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  33. A.Butenko V.Mikhailov G.Khodjibagiyan N.Topilin 2.3 m Vladimir I. Veksler 4.0 m 4. NICA project status and plans (Contnd) 4.2. Booster “Nuclotron-type” SC magnets for Booster Superconducting Booster in the magnet yoke of The Synchrophasotron Nuclotron Synchrophasotron yoke Booster • B = 25 Tm, Bmax = 1.8 T • 3 single-turn injections • 2) Storage and electron cooling of 8×109197Au32+ • 3) Acceleration up to 440 MeV/u • 4) Extraction & stripping Dismounting is in progress presently Status: designing (working drawings) To be commissioned in 2013. Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  34. 4. NICA project status and plans (Contnd) 4.2. Booster (Contnd) Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  35. 4. NICA project status and plans (Contnd) 4.2. Booster (Contnd) Heavy ion Linac Beam injection Electron cooling system 2.3 m Slow extraction 4.0 m RF system Fast extraction Transfer to Nuclotron Experimental area bld. 1 B Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  36. Injection & extraction Injection scheme Three pulses of single turn injection Extraction scheme Injection pulses FirstSecondThird x y Closed orbit displacement t 4.2. Booster (Contnd) 4. NICA project status and plans (Contnd) Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  37. 4. NICA project status and plans (Contnd) 4.2. Booster (Contnd) Booster parameters Circumference 214 m Max B 27 T·m Lattice type FODO Superperiods 4 Periods 24 Booster superperiod Strait sections 2 x 8,6 m Dipol magnets 40 x 2 m Maximum dipole field 1,8 T Quadrupole magnets 48 x 0.4 m Vacuum 10-11 Torr Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  38. 4. NICA project status and plans (Contnd) 4.2. Booster (Contnd) Ring equipment Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  39. 4. NICA project status and plans 4.2. Booster (Contnd) RF system (designed by Budker INP) Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  40. 4. NICA project status and plans (Contnd) 4.2. Booster (Contnd) Vacuum system Booster superperiod Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  41. 4. NICA project status and plans (Contnd) 4.2. Booster (Contnd) SC magnet technology SC hollow cable Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  42. 4. NICA project status and plans (Contnd) 4.2. Booster (Contnd) Electron cooling system of the Booster collector E.Ahmanova, I.Meshkov, A.Smirnov, N.Topilin, Yu.Tumanova, S.Yakovenko “warm” solenoids electron gun cryogenic shield superconducting solenoids Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  43. 4. NICA project status and plans (Contnd) 4.2. Booster (Contnd) Electron cooling system of the Booster (Contnd) e-gun e-collector Round Table Workshop IV I.Meshkov, Status of the NICA TDR JINR, Dubna September 1, 2009

  44. 4. NICA project status and plans 4.2. Booster (Contnd) Main Power Supply system Main power supply unit: Maximum current 12 kA Voltage 250 V I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009

  45. 4. NICA project status and plans 4.3. Nuclotron-NICA G.Trubnikov & the Team • To be designed, • constructed and commissioned: • Injection system (new HILAC) • RF system – new version with bunch compression • 3.Dedicated diagnostics • 4.Single turn extraction with fine synchronization • 5.Polarized protons acceleration in Nuclotron I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 This project succeeds the Nuclotron-M project To be commissioned in 2013.

  46. 4. NICA project status and plans 4.4. Collider Double ring collider;(B)max = 45 Tm, Bmax = 4 T A.Kovalenko G.Khodjibagiyan “Twin magnets” for NICA collider rings “Twin” dipoles “Twin” quadrupoles 1 – Cos coils, 2 – “collars”, 3 – He header, 4 – iron yoke, 5 – thermoshield, 6 – outer jacket I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 To be commissioned in 2014.

  47. 4. NICA project status and plans 4.4. Collider Electron cooling system of the Collider Max electron energy, MeV 2.5 Max electron current, A 0.5 Solenoid magnetic field, T 0.3 “Magnetized” electron beam Solenoid type: “warm” at acceleration columns superconducting at transportation and cooling sections HV generator: Dynamitron type I.Meshkov A.Smirnov S.Yakovenko 3 m 6 m I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 To be commissioned in 2014. • Under development in collaboration with • All-Russian Institute for • Electrotechnique (Moscow) • FZ Juelich • Budker INP

  48. 4. NICA project status and plans IHEP (Protvino) InjectorLinac Budker INP • Booster RF system • Booster electron cooling • Collider RF system • Collider SC magnets (expertise) • HV electron cooler for collider • Electronics (?) FZ Jűlich (IKP) HV Electron cooler Stoch. cooling Fermilab HVElectron cooler Stoch. cooling BNL (RHIC) Electron & Stoch. Cooling GSI/FAIR SC dipoles for Booster/SIS-100 SC dipoles for Collider I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 4.5. NICA Collaboration All-Russian Institute for Electrotechnique HVElectron cooler ITEP: Beam dynamics in the collider Corporation “Powder Metallurgy” (Minsk, Belorussia): Technology of TiN coating of vacuum chamber walls for reduction of secondary emission

  49. Thank you for your attention! I.Meshkov, NICA Project Status ANKE/PAX Workshop Dubna, June 22-26, 2009

  50. 4. NICA project status and plans V.Kalagin I.Meshkov V.Mikhailov G.Trubnikov 4.6. “Collider 2T” From Nuclotron MPD SPD G.Khodgibagiyan I.Meshkov, Status of NICA Project VIII Sarantsev Seminar Alushta, September 1, 2009 “The ambush regiment” Collider: C_Ring 380 м Dipoles 2 Тл 25 m Luminosity?

More Related