1 / 53

ITC (Isothermal Titration Calorimetry )

ITC (Isothermal Titration Calorimetry ). 황정현. Contents. Introduction ITC technology Principle Application Data analysis Summary. Introduction. Introduction. Isothermal Titration Calorimetry Iso - : 같은 , 동 ( 同 )-, 등 ( 等 )- Thermal : ‘ 열’의 Titration : 적정 Calorimetry : 열량 측정

blaze
Download Presentation

ITC (Isothermal Titration Calorimetry )

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ITC(Isothermal Titration Calorimetry) 황정현

  2. Contents • Introduction • ITC technology • Principle • Application • Data analysis • Summary

  3. Introduction

  4. Introduction • Isothermal Titration Calorimetry • Iso- : 같은, 동(同)-, 등(等)- • Thermal : ‘열’의 • Titration : 적정 • Calorimetry : 열량 측정 • calorimeter 열량계

  5. Thermometric Titration • Anumberofinstrumentaltitrationtechniques • Accurate and precise without a subjective interpretation • Reported early in the 20th century • (Bell and Cowell, 1913)

  6. ITC Technology

  7. ITC technology • Calometer를 이용한 the heat of a reaction 측정법 • 현재, engineering과 computer 기술이 적용. 자동화된 software를 사용 • DSC (differential scanning calorimeter) • ITC (isothermal titration calorimeter)

  8. Differential Scanning Calorimeter (1/4) • 시차주사 열량법 • 온도변화에따른열에너지변화를측정 • 고분자물질연구에많이이용 • 시료물질과 기준물질을 동시에 가열/냉각시켜시료의 열 출입을 측정 • 기준물질:가열로의 온도조절에 따라 • 시료물질:주어지는 온도에 의해 • Heat flux plate에 의해 열량 값을 얻음

  9. Differential Scanning Calorimeter (2/4)

  10. Differential Scanning Calorimeter (3/4)

  11. Differential Scanning Calorimeter (4/4)

  12. DSC thermogram (1/2) • Glass transition temperature(Tg) • Melting temperature(Tm) • Crystallization temperature(Tc) • 결정화시간, 순도, 산화, 분해

  13. DSC thermogram (2/2)

  14. Isothermal Titration Calorimeter (1/6) • Biomolecular interactions에 관한 연구 • protein-ligand • protein-DNA • Antibody-antigen • Hormone-receptor

  15. Isothermal Titration Calorimeter (2/6) • 모든 binding parameter를 측정 • Binding이 나타날 때 • Heat is taken up • Absorbed • endothermic • Heat is evolved • Released • exothermic

  16. Isothermal Titration Calorimeter (3/6)

  17. Isothermal Titration Calorimeter (4/6) • Reference and sample cell are identical. • Aliquots of the second binding partner are added with a stirring syringe • The sample cell is mixed with stirring paddles at the syringe tip.

  18. Isothermal Titration Calorimeter (5/6) • The reference cell is electrical heated preset steady temperature. • The temperature difference between reference and sample cell is measured.

  19. Isothermal Titration Calorimeter (6/6)

  20. ITC – Before Titration

  21. Titration Begins : FirstInjection

  22. Return to Baseline

  23. Second Injection

  24. Second Return to Baseline

  25. Injections Continue

  26. Injections Continue

  27. End of Titration

  28. ITC – Fitting the Data (1/3)

  29. ITC – Fitting the Data (2/3) • The peaks from the upper panel raw data are integrated plotted with respect to the concentrations of the interacting components as molar heats(y-axis) and molar ratio(x-axis).

  30. ITC – Fitting the Data (3/3) • Fitting of this curve gives the parameters derived in the text.

  31. Principle

  32. Principle • Biological macromolecules의 interaction • Molecular recognition의 complexity and diversity • Immune response, signal transduction cascades, gene expression등 중요 요인에대한 관심과 적용

  33. Basic Thermodynamics (1/9) • 연관변수를 측정하여 대상의 정체를 확인 • n : Stoichiometry of the interaction • Ka: Association constant • Kd: Dissociation constant • ΔGb :Free energy • ΔHb:Enthalpy • ΔSb:Entropy • ΔCp:Heat capacity of binding

  34. Basic Thermodynamics (2/9) • At Protein-Ligand Interactions • The First Law of Thermodynamics • 열역학 제 1법칙 • ΔE=Q+W • ΔE represents the change in the energy • Q the heat absorbed by the system • W the work done on the system

  35. Basic Thermodynamics (3/9) • At Protein-Ligand Interactions • The Second Law of Thermodynamics • 열역학 제 2법칙 • 고립계에서 총 entropy(무질서도)의 변화는 항상 증가하거나 일정하며 절대로 감소하지 않는다. 에너지는 방향이 있다는 것이다. • ΔS≥0 • 부등호는 비가역과정을 나타내고등호는 가역과정을 나타낸다.

  36. Basic Thermodynamics (4/9) • At Protein-Ligand Interactions • The Second Law of Thermodynamics or • By defining change in “Entropy” as or

  37. Basic Thermodynamics (5/9) • At Protein-Ligand Interactions • 대부분의 protein-ligand interactions • At constant temperature & Pressure • Only work is –PΔV • We can change this term to ΔH, then

  38. Basic Thermodynamics (6/9) • With the definition of (Gibbs) 'Free Energy' as • ΔG<0 : spontaneous change • ΔG = 0 : Equilibrium

  39. Basic Thermodynamics (7/9) • ΔH의 효용성 • Direct measurement of heat of reaction • No ΔPV-work is the same as ΔH

  40. Basic Thermodynamics (8/9) • Indirect measure • Utilizes a simplified relationship • The Van't Hoff Equation • Gibbs Free Energy Equation • At steady state, at which ΔG=0, then

  41. Basic Thermodynamics (9/9) • Gibbs Free Energy Equation • This is an integrated form of theVan't Hoff Equation

  42. Van't Hoff equation(1/2) • 평형 상수의 자연로그와 온도의 역수 값에 대한그래프는 직선을 그린다. • 이 직선의 기울기는 엔탈피의변화량을기체상수로 나누어준 값의 음의 값이다. • 절편값은 엔트로피의 변화량을 기체상수로나누어준 값이다. • 이 식을 미분형태로 표현한 것이Van't Hoff Equation이다.

  43. Van't Hoff equation(2/2) • 온도 변화에 따른 평형상수(K)의 변화 비를엔탈피 변화를 이용하여 표현

  44. Application

  45. Application • 실험 data는 protein-ligand 연구정보를 참고하여 분석 • MEDLINE search • ITC equipment suppliers

  46. MEDLINE • Medical Literature Analysis and Retrievalsystem Online • Bibliographic database of life science andbiomedical information • Medicine, nursing, pharmacy, dentistry,health care, biology, biochemistry andmolecular evolution • Searchable via PubMed

  47. Data Analysis

  48. 생물리학 연계성 • Thermodynamic parameters를 측정 • 생체 물질의 interaction • Drug나 Enzyme에 관련해서 직접적으로 • 축적된 3-D protein structures의 이해 • 여러 가지 결합 상황을 예측, design 가능 • Weak forces로 이루어지는 protein-ligandinteraction을 분석, 추정

  49. Summary

More Related