Few body systems in low energy effective theory
This presentation is the property of its rightful owner.
Sponsored Links
1 / 57

Few-Body Systems in Low Energy Effective Theory PowerPoint PPT Presentation


  • 51 Views
  • Uploaded on
  • Presentation posted in: General

Few-Body Systems in Low Energy Effective Theory. 鎌田裕之(九州工業大学) E. Epel b aum ( Juelich 研究所+Bonn大学) W. Glöckle ( Bochum 大学) Ulf-G. Meissner ( Bonn 大学). KEK研究会 『 原子核・ハドロン物理:横断研究会 』 高エネルギー加速器研究機構、素粒子原子核研究所 2007 年 11 月 19 日 ( 月 ) ~ 11 月 21 日 ( 木 ) KEK 4 号館 1 階セミナーホール.

Download Presentation

Few-Body Systems in Low Energy Effective Theory

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Few body systems in low energy effective theory

Few-Body Systems in Low Energy Effective Theory

鎌田裕之(九州工業大学)

E. Epelbaum(Juelich研究所+Bonn大学)

W. Glöckle(Bochum大学)

Ulf-G. Meissner(Bonn大学)

KEK研究会

『原子核・ハドロン物理:横断研究会』

高エネルギー加速器研究機構、素粒子原子核研究所2007年11月19日(月)~11月21日(木)KEK4号館1階セミナーホール


New generation formalism

Basic Yukawa formalism

  • 2NF

  • 1.Bonn Potential

  • 2.Argonne Potential

  • 3.Nijmegen Potential

  • 3NF

  • Fujita-Miyazawa

  • Urbana IX

  • Tucson-Melbourn

New generation formalism

Meson theoretical realistic formalism

★Consistence with QCD

★Unification of 2NF and 3NF

★Applicability

Chiral Perturbation theoretical formalim


Line up

Line up

  • Feshbach-Bloch-Horowitzの方法

  • Low-Momentum NN Interaction

  • Okubo方程式を解く

  • Okubo理論を場の量子論に適用する

  • カイラル摂動理論

  • 3体力&4体力

  • Summary & Outlook


Interaction

Low-Momentum NN Interaction

EffectiveTheory

- Tutorial introduction -

Feshbach-Bloch-Horowitzの方法

B&H,NP8,(1958)91.

Okubo 理論:S.Okubo,PTP12,(1954)603


Feshbach bloch horowitz

Feshbach-Bloch-Horowitzの方法

B&H,NP8,(1958)91.

Q

P

λ

λ

Veff=Veff(E)


Few body systems in low energy effective theory

Okubo理論と散乱振幅

Low-Momentum NN Interaction


Few body systems in low energy effective theory

Aについての非線形方程式


Kubo i

Okubo方程式を解く (I)


Few body systems in low energy effective theory

Aについての線形方程式


Binding energies of and

Binding energies of 3H and 4He

Λ→

Λ→

S. Fujii, E. Epelbaum, H. Kamada, R. Okamoto, K. Suzuki,  W. Glöckle,

Physical Review C 70, 024003 (2004)


Binding energy of h

Binding Energy of 3H

Eb [MeV]


Binding energy of he

Binding Energy of 3He

Eb [MeV]


Binding energy of particle

Binding Energy of αparticle

Eb [MeV]


Kubo ii

Okubo方程式を解く (II)

ポイント:ベキ展開によって漸化式を求める。


Few body systems in low energy effective theory

核子間相互作用


Few body systems in low energy effective theory

Okubo理論を場の量子論に適用する

  • フォック空間 

    φ:π中間子が現れない(on-mass-shell)→P

    ψ:π中間子の現れる(1個、2個、3個・・・)

    ψ=ψ(1)+ ψ(2) + ψ(3)・・・       →Q

0π:NNのみ

1π

2π

φ

ψ(1)

ψ(2)

ψ(*)

。。。


Few body systems in low energy effective theory

Okubo理論を場の量子論に適用する

  • フォック空間 

    φ:π中間子が現れない(on-mass-shell)

    ψ:π中間子の現れる(1個、2個、3個・・・)

    ψ=ψ(1)+ ψ(2) + ψ(3)・・・

  • Full Hamiltonian

    Η =H0+HI

    H0=HN0 + Hπ0HN0=-N†(∇2/2m)N

    Hπ0=(1/2)π2+(1/2)(∇π)2+(1/2)mπ2π2

    N(π):核子(π中間子)の場の演算子

  • 相互作用HIは、例えばカイラル・ラグランジアンを用いる


Chiral perturbation theory

Chiral Perturbation Theory

Chirality:

Symmetry of massless QCD Lagrangian:

SU(Nf)L× SU(Nf)R×U(1)V×U(1)A

Nambu-Goldstone-WeinbergRealization:

Mechanism of the sponteneous breaking symmetry:

SU(2)L× SU(2)R ~  SU(2)A× SU(2)V ⇒  SU(2)V

SU(2)A× SU(2)V~SO(4)  Dim[SO(4)]=4>3πfields

Nonlinear realization :π→π’=f(π;g)


Few body systems in low energy effective theory

相互作用HI

Low Energy Coefficient: CT,CS,C1,C2,C4


Few body systems in low energy effective theory

Low Energy Coefficient: D1,D2,C1~C7


Okubo

Okubo 方程式


Few body systems in low energy effective theory

Yukawaforce:1πon exchange

Contact force


Chiral perturbation theory1

Chiral Perturbation Theory

2NF

3NF

4NF

ν=0

&

ν=2

π+N

Δ+heavy meson

expansion

ν=3

ν=4


Few body systems in low energy effective theory

2NF

3NF

4NF

Chiral Perturbation Theory

Nonrelativistic

limit

ν=0

&

ν=2

π+N

Δ+heavy meson

expansion

ν=3

ν=4


Chiral perturbation theory2

Chiral Perturbation Theory

2NF

3NF

4NF

ν=0

&

FM3NF

ν=2

π+N

Δ+heavy meson

expansion

ν=3

ν=4


Few body systems in low energy effective theory

NLO

NNLO

Cross section

Ay

T20

T21

T22

3MeV

NLO

NNLO


Few body systems in low energy effective theory

NLO

NNLO

Cross section

Ay

T20

T21

T22

10 MeV

NLO

NNLO


Few body systems in low energy effective theory

NLO

NNLO

Cross section

Ay

T20

T21

T22

65 MeV

NLO

NNLO


Few body systems in low energy effective theory

Three-body break-up reaction

FSI configration

QFS configuration

Space Star configuration

13 MeV

NLO

NNLO


Few body systems in low energy effective theory

Three-body break-up reaction

65 MeV

NLO

NNLO


Chiral perturbation theory3

Chiral Perturbation Theory

2NF

3NF

4NF

ν=0

&

FM3NF

ν=2

π+N

Δ+heavy meson

expansion

ν=3

ν=4


Few body systems in low energy effective theory

NNLO 3NF


Tucson melbourn 3nf

Tucson Melbourn 3NF

g  (σ・q)

4π (m2+q2)

(σ・q’)

m2+q’2 

W=

F(q,q’)

F(q,q’)=a +b (q ・q’)+c(q2+q’2)+d σ・(q×q’)


Few body systems in low energy effective theory

Relation to TM – 3NF parameters

F(q,q’)=a +b (q ・q’)+c(q2+q’2)+d σ・(q×q’)

c1,c2 and c3 are

parameter free.

The condition c=0 makes

the 3NF new as called

TM’-3NF.


Few body systems in low energy effective theory

Faddeev three-body calculation

for the proton-deuteron elastic

scattering with the

realistic NN potential and

the three-nucleon force

65

Differential Cross Section

Elab[MeV]

2NF only

190

135

3NF included

TM’ 3NF

Urbana IX 3NF

Sagara Discrepancy

Phys. Rev. C 63, 024007 (2001)


Few body systems in low energy effective theory

Faddeev three-body calculation

for the proton-deuteron elastic

scattering with the

realistic NN potential and

the three-nucleon force

65

Tensor Polarization T20

Elab[MeV]

2NF only

3NF (original TM)

190

135

TM’ 3NF

Urbana IX 3NF


Few body systems in low energy effective theory

NNLO 3NF


Few body systems in low energy effective theory

Low Energy Constant


Chiral perturbation theory4

Chiral Perturbation Theory

2NF

3NF

4NF

ν=0

&

ν=2

π+N

Δ+heavy meson

expansion

ν=3

ν=4


Few body systems in low energy effective theory

2006.11.17

35 Diagram

21 Diagram

8 Diagram


Few body systems in low energy effective theory

Fujita-Miyazawa 3NF

b-term,d-term

Urbana 3NF

Tucson-Melbourne 3NF

Brazil 3NF

(1957)

a-term,(c-term)

Scalar Short range

U0

πρ exchange:

F(IΔ+), Kroll-Ruderman term

Illinoi Model

Chiral perturbation Theoretical 3NF (NNNLO)

・3π exchange

・・・・・・・{

・2π-1π term

・2π exchange between all threenucleons

・contact 1πexchange

・contact 2πexchnge


Few body systems in low energy effective theory

4NF


Chiral perturbation theory5

Chiral Perturbation Theory

2NF

3NF

4NF

ν=0

&

ν=2

π+N

Δ+heavy meson

expansion

ν=3

ν=4


Possible diagrams nnnlo

Possible Diagrams (NNNLO)


Few body systems in low energy effective theory

α粒子(4核子系)における4体力の寄与

  • CT=0 の場合

  • Gaussian:            - 270 keV

  • (Λ,Λ)=(400,500):    - 386 keV

  •      =(550,500):   - 219 keV

〔MeV/c〕

Acta Physica Polonica B37, 2889-2903 (2006)


Few body systems in low energy effective theory

5NF


Few body systems in low energy effective theory

[MeV]


Few body systems in low energy effective theory

[MeV]

V5 < 6kV


Summary

Summary

  • Okubo理論は、カイラル摂動理論に用いることによって、多核子間のポテンシャルをコンシステントに導く.(2NF,3NF,4NF,・・・)

  • TM3体力のc項の不必要性を予言し、それによって、陽子・重陽子散乱におけるT20などの偏極量を改善している.

  • 3体力は重要視されつつあり,中重核への適用が期待される.


Outlook

LEC(Cn, Dn, En,・・・)は,QCDラグランジアンから求めるべき“観測量”である.

Outlook

QCD

Quark, Gluon

・・・ confinement ?

χPT

N, π


Few body systems in low energy effective theory

QCD

χPT

N, π: confinement

P

Q

VNN

VNNN

VNNNN

VπN

Vππ


  • Login