1 / 19

David Dryden School of Chemistry University of Edinburgh

Bacterial DNA restriction and modification systems: structure, function and evolution. David Dryden School of Chemistry University of Edinburgh. Bacterial DNA restriction and modification systems: structure, function and evolution.

bin
Download Presentation

David Dryden School of Chemistry University of Edinburgh

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Bacterial DNA restriction and modification systems: structure, function and evolution. David Dryden School of Chemistry University of Edinburgh

  2. Bacterial DNA restriction and modification systems: structure, function and evolution. Current group: Gareth Roberts, John White, Laurie Cooper, Ed Bower, Matt Tilling Collaborators: University of Cambridge: Robert Henderson, Mike Edwardson University of Edinburgh: Noreen Murray, Garry Blakely, Malcolm Walkinshaw, Wilson Poon, Anita Jones St. George's, University of London: Patrick Houston, Jodi Lindsay University of Leeds: Chris Kennaway, John Trinick University of Portsmouth: James Taylor, Geoff Kneale University of St. Andrews: Jim Naismith

  3. Bacterial DNA restriction and modification systems: structure, function and evolution. 1. Restriction and modification (RM) systems and their inhibition by antirestriction systems. 2. Type I RM enzymes: structure, function and evolution. 3. Some speculation on the antiquity of RM systems and their influence on evolution.

  4. RM systems control Horizontal Gene Transfer. Tock and Dryden, Curr. Op. Microbiol. (2005) 8, 466.

  5. The major classes of RM systems. With RM No RM Bacteria: 4651 259 Archaea: 190 1 REBASE Genomes (4910 Bacteria, 191 Archaea) There are 11 subtypes of Type II systems! Also Type III and Type IV systems.

  6. The major classes of RM systems are Type I and Type II systems. +Mg2+ +Mg2+ ATP SAM The tools of molecular biology are the simplest Type II restriction enzymes. Nature has evolved systems of far greater complexity such as the Type I systems. Type I RM enzymes comprise 5 subunits 1x HsdS binds DNA target 2x HsdM binds SAM, methylates DNA 2xHsdR hydrolyses ATP, translocates and cuts DNA Roberts et al. Nucleic Acids Res. (2003) 31, 1805 Dryden Nature Struct. Mol. Biol. (2005) 11, 804.

  7. Antirestriction systems such as antirestriction proteins control RM systems. They co-evolve to assist Horizontal Gene Transfer. Antirestriction methods: 1. Avoid having target sites 2. Modified DNA bases 3. Co-injection of antirestriction proteins 4. Consumption of cofactors for R/M systems 5. Enhance host modification activity 6. Proteolysis of RM enzymes 7. Encode specialised antirestriction proteins e.g. ArdA and ArdB on conjugative transposons and plasmids and Ocr on phage T7. Plus many others as yet poorly characterised. Ocr from phage T7 Bickle and Kruger, Microbiol. Rev. (1993) 57, 434. Tock and Dryden, Curr. Op. Microbiol. (2005) 8, 466. Dryden, Trends Biotech. (2006) 24, 378. Walkinshaw et al. Mol. Cell (2002) 9, 187. McMahon et al., (2009) Nucl. Acids Res. 37, 4887. Serfiotis-Mitsa et al., (2009) Nucl. Acids Res. 38,1723.

  8. Antirestriction systems such as antirestriction proteins control RM systems. gene

  9. Antirestriction systems such as antirestriction proteins control RM systems. ArdB from a B. pertussis plasmid Ocr from phage T7 ArdA from transposon Tn916 Walkinshaw et al. Mol. Cell (2002) 9, 187. McMahon et al., (2009) Nucl. Acids Res. 37, 4887. Serfiotis-Mitsa et al., (2010) Nucl. Acids Res. 38, 1723.

  10. Bacterial DNA restriction and modification systems: structure, function and evolution. 1. Restriction and modification (RM) systems and their inhibition by antirestriction systems. 2. Type I RM enzymes: structure, function and evolution. 3. Some speculation on the antiquity of RM systems and their influence on evolution.

  11. The components of Type I DNA RM enzymes. Highly conserved in sequence and structure except for target recognition domains in the S subunits. Type I RM enzyme comprises 5 subunits: R2M2S1 Molecular mass: 440,000 Kennaway et al. Genes and Development (2012) 26, 92-104.

  12. Type I RM systems in S. aureus allow changes of specificity. HsdS

  13. EM model for a Type I RM enzyme with DNA bound. HsdR (red), HsdM (blue and cyan), HsdS (yellow). Kennaway et al. Genes and Development (2012) 26, 92-104.

  14. Type I RM systems in S. aureus control horizontal gene transfer. promoter CC1, CC5, CC8/ST239 R Nuclease Motor N-term tail promoter HsdR frameshift M catalytic tail N-term CC1-1 S 5 CCAY TTAA cr cr promoter frameshift M catalytic tail N-term S CC1-2 and CC8/ST239 6 CCAY TGT cr cr promoter frameshift M catalytic tail N-term S CC5-1 and CC8/ST239 5 ATC CCT cr cr promoter frameshift M catalytic tail N-term S CC5-2 6 CCAY GTA cr cr HsdM HsdS Roberts et al. Nucl. Acids Res. doi: 10.1093/nar/gkt535

  15. Bacterial DNA restriction and modification systems: structure, function and evolution. 1. Restriction and modification (RM) systems and their inhibition by antirestriction systems. 2. Type I RM enzymes: structure, function and evolution. 3. Some speculation on the antiquity of RM systems and their influence on evolution.

  16. What was the first RM system? What did the first RM system look like? When did it appear? What pressure caused it to diversify? (Antirestriction perhaps?) Williams. J. Inorg. Biochem. (2006), 100, 1908

  17. Why was the first RM system not a Type II RM system? They are too specialised. Type II restriction enzymes highly variable in sequence and structure but the methylases are conserved. Pingoud and Jeltsch. Nucl Acids Res (2001) 29, 3705 Cheng and Roberts. Nucl Acids Res (2001) 29, 3784 Subtypes of Type II restriction enzymes.

  18. What was the first RM system? Perhaps it was a proto-Type I RM enzyme? The first RM system could be built from DNA repair enzymes, small-molecule methylases and transcription factors. These would be present before the LUCA. Most antirestriction targets Type I RM systems. This would force diversification in RM structure to avoid antirestriction DNA mimics and create new RM Types.

  19. What would happen to Horizontal Gene Transfer with "perfect" restriction and modification systems or "perfect" antirestriction? SLIME Why did RM and anti-RM appear?

More Related