Other quasi experimental designs
Download
1 / 18

Other Quasi-Experimental Designs - PowerPoint PPT Presentation


  • 135 Views
  • Uploaded on

Other Quasi-Experimental Designs. Design Variations. Show specific design features that can be used to address specific threats or constraints in the context. Proxy Pretest Design. N O 1 X O 2 N O 1 O 2. Pretest based on recollection or archived data

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Other Quasi-Experimental Designs' - bevan


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

Design variations
Design Variations

Show specific design features that can be used to address specific threats or constraints in the context


Proxy pretest design
Proxy Pretest Design

N O1 X O2

N O1 O2

  • Pretest based on recollection or archived data

  • Useful when you weren’t able to get a pretest but wanted to address gain


Separate pre post samples
Separate Pre-Post Samples

N1 O

N1 X O

N2 O

N2 O

  • Groups with the same subscript come from the same context.

  • Here, N1 might be people who were in the program at Agency 1 last year, with those in N2 at Agency 2 last year.

  • This is like having a proxy pretest on a different group.


Separate pre post samples1
Separate Pre-Post Samples

R1 O

R1 X O

R2 O

R2 O

N

  • Take random samplesat two times of people at two nonequivalent agencies.

  • Useful when you routinely measure with surveys.

  • You can assume that the pre and post samples are equivalent, but the two agencies may not be.

N


Double pretest design
Double-Pretest Design

N O O X O

N O O O

  • Strong in internal validity

  • Helps address selection-maturation

  • How does this affect selection-testing?


Switching replications
Switching Replications

N O X O O

N O O X O

  • Strong design for both internal and external validity

  • Strong against social threats to internal validity

  • Strong ethically


Nonequivalent dependent variables design nedv
Nonequivalent Dependent Variables Design (NEDV)

N O1 X O1

N O2 O2

  • The variables have to be similar enough that they would be affected the same way by all threats.

  • The program has to target one variableand not the other.


Nedv example
NEDV Example

  • Only works if we can assume that geometry scores show what would have happenedto algebra if untreated.

  • The variable is the control.

  • Note that there is no control grouphere.


Nedv pattern matching
NEDV Pattern Matching

  • Have many outcome variables.

  • Have theory that tells how affected(from most to least) each variable will be by the program.

  • Matchobserved gains with predicted ones.

  • If match, what does it mean?


Nedv pattern matching1
NEDV Pattern Matching

  • A “ladder” graph.

  • What are the threats?

r = .997


Nedv pattern matching2
NEDV Pattern Matching

  • Single group design, but could be used with multiple groups(could even be coupled with experimental design).

  • Can measure left and right on different scales(e.g., right could be t-values).

  • How do we get the expectations?


Regression point displacement rpd
Regression Point Displacement (RPD)

N(n=1) O X O

N O O

  • Intervene in a single site

  • Have manynonequivalent control sites

  • Good design for community-based evaluation


Rpd example
RPD Example

  • Comprehensive community-based AIDS education

  • Intervene in one community (e.g., county)

  • Have 29 other communities(e.g., counties) in state as controls

  • measure is annual HIV positive rate by county


Rpd example1
RPD Example

0

.

0

7

0

1

0

.

0

6

Y

0

.

0

5

0

.

0

4

0

.

0

3

0

.

0

3

0

.

0

4

0

.

0

5

0

.

0

6

0

.

0

7

0

.

0

8

X


Rpd example2
RPD Example

0

.

0

7

0

1

0

.

0

6

Regressionline

Y

0

.

0

5

0

.

0

4

0

.

0

3

0

.

0

3

0

.

0

4

0

.

0

5

0

.

0

6

0

.

0

7

0

.

0

8

X


Rpd example3
RPD Example

0

.

0

7

0

1

0

.

0

6

Regressionline

Y

0

.

0

5

Treated communitypoint

0

.

0

4

0

.

0

3

0

.

0

3

0

.

0

4

0

.

0

5

0

.

0

6

0

.

0

7

0

.

0

8

X


Rpd example4
RPD Example

0

.

0

7

0

1

0

.

0

6

Regressionpine

Y

0

.

0

5

Treated communitypoint

0

.

0

4

Posttestdisplacement

0

.

0

3

0

.

0

3

0

.

0

4

0

.

0

5

0

.

0

6

0

.

0

7

0

.

0

8

X


ad