- 87 Views
- Uploaded on

Download Presentation
## PowerPoint Slideshow about ' Module 11' - bethany-duffy

**An Image/Link below is provided (as is) to download presentation**

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript

### Constructing PH using PL

### PT in more detail

### Constructing QL (and thus PT)

### Analyzing proposed transformations

Module 11

- Proving more specific problems are not solvable
- Input transformation technique
- Use subroutine theme to show that if one problem is unsolvable, so is a second problem
- Need to clearly differentiate between
- use of program as a subroutine and
- a program being an input to another program

Proving a problem L is unsolvable

- Assume PL is a procedure that solves problem L
- We have no idea how PL solves L

- Construct a program PH that solves H using PL as a subroutine
- We use PL as a black box
- (We could use any unsolvable problem in place of H)

- Argue PH solves H
- Conclude that L is unsolvable
- Otherwise PL would exist and then H would be solvable
- L will be a problem about program behavior

Focusing on H

- In this module, we will typically use H, the Halting Problem, as our known unsolvable problem
- The technique generalizes to using any unsolvable problem L’ in place of H.
- You would need to change the proofs to work with L’ instead of H, but in general it can be done

- The technique also can be applied to solvable problems to derive alternative consequences
- We focus on H to simplify the explanation

Answer-preserving input transformations and Program PT

PH has two subroutines

- There are many ways to construct PH using program PL that solves L
- We focus on one method in which PH consists of two subroutines
- Procedure PL that solves L
- Procedure PT which computes a function f that I call an answer-preserving (or answer-reversing) input transformation
- More about this in a moment

Answer-preserving input transformation PT

- Input
- An input to H

- Output
- An input to L such that
- yes inputs of H map to yes inputs of L
- no inputs of H map to no inputs of L

- An input to L such that
- Note, PT must not loop when given any legal input to H

Why this works *

yes input to H

PT

yes input to L

yes

PL

no

no input to H

no input to L

PH

We have assumed that PL solves L

Answer-reversing input transformation PT

- Input
- An input to H

- Output
- An input to L such that
- yes inputs of H map to no inputs of L
- no inputs of H map to yes inputs of L

- An input to L such that
- Note, PT must not loop when given any legal input to H

Why this works

yes input to H

PT

no input to L

no

yes

PL

no

no input to H

yes input to L

yes

PH

We have assumed that PL solves L

PT(x)

Yes/No

PL

PT

PH

Yes->Yes and No->NoNo inputs

for H

Yes inputs

for H

Domain of H

Yes inputs

for L

No inputs

for L

Domain of L

No inputs

Domain of H

Yes inputs

No inputs

Domain of L

Notation and Terminology- If there is such an answer-preserving (or answer-reversing) input transformation f (and the corresponding program PT), we say that H transforms to (many-one reduces to) L
- Notation
H ≤ L

Generalization

- As noted earlier, while we focus on transforming H to other problems, the concept of transformation generalizes beyond H and beyond unsolvable program behavior problems
- We work with some solvable, language recognition problems to illustrate some aspects of the transformation process in the next few slides

No inputs

Domain of L1

Yes inputs

No inputs

Domain of L2

Example 1- L1 is the set of even length strings over {0,1}
- What are the set of legal input instances and no inputs for the L1 LRP?

- L2 is the set of odd length strings over {0,1}
- Same question as above

- Tasks
- Give an answer-preserving input transformation f that shows that L1 LRP ≤ L2 LRP
- Give a corresponding program PT that computes f

No inputs

Domain of L1

Yes inputs

No inputs

Domain of L2

Example 2- L1 is the set of all strings over {0,1}
- What is the set of all inputs, yes inputs, no inputs for the L1 LRP?

- L2 is {0}
- Same question as above

- Tasks
- Give an answer-preserving input transformation f which shows that the L1 LRP ≤ L2 LRP
- Give a corresponding program PT which computes f

No inputs

Domain of L1

Yes inputs

No inputs

Domain of L2

Example 3- L1
- Input: Java program P that takes as input an unsigned int
- Yes/No Question: Does P halt on all legal inputs

- L2
- Input: C++ program P that takes as input an unsigned int
- Yes/No Question: Does P halt on all legal inputs

- Tasks
- Describe what an answer-preserving input transformation f that shows that L1 ≤ L2 would be/do?

Input

Program QH that has one input of type unsigned int

non-negative integer y that is input to program QH

Yes/No Question

Does QH halt on y?

Target Problem L

Input

Program QL that has one input of type string

Yes/No question

Does Y(QL) = the set of even length strings?

Assume program PL solves L

Problem Definitions *PT(x)

x

PT

Y/N

Yes/No

PL

PH

- We are building a program PH to solve the halting problem H

- PH will use PL as a subroutine, and we have no idea
- how PL accomplishes its task

- PH will use PT as a subroutine, and we must explicitly
- construct PT using specific properties of H and L

P’s and Q’s

- Programs which are PART of program PH and thus “executed” when PH executes
- Program PT, an actual program we construct
- Program PL, an assumed program which solves problem L

- Programs which are INPUTS/OUTPUTS of programs PH, PL, and PT and which are not “executed” when PH executes
- Programs QH, QL, and QYL
- code for QYL is available to PT

- Programs QH, QL, and QYL

Input

Program Q that has one input of type string

Yes/No question

Does Y(Q) = the set of even length strings?

Program PL

Solves L

We don’t know how

Consider the following program Q1

bool main(string z)

{while (1>0) ;}

What does PL output when given Q1 as input?

Consider the following program Q2

bool main(string z)

{ if ((z.length %2) = = 0) return (yes)

else return (no); }

What does PL output when given Q2 as input?

Two inputs for L *Input

Program Q that has one input of type string

Yes/No question

Does Y(Q) = the set of even length strings?

Program PL

Solves L

We don’t know how

Consider the following program QL with 2 procedures Q1 and QYL

bool main(string z) {

Q1(5); /* ignore return value */

return(QYL(z));

}

bool Q1(unsigned x) {

if (x > 3) return (no); else loop;

}

bool QYL(string y) {

if ((y.length( ) % 2) = = 0) return (yes); else return(no);

}

What does PL output when given QL as input?

Another input for L *(Also Input of H)

Program QH

one input of type unsigned int

Non-negative integer y

Program QL that is the output of PT

(Also input of L)

bool main(string z) {

QH(y); /* QH and y come left-hand side */

/* ignore return value */

return(QYL(z));

}

bool QH(unsigned x) {

/* comes from left-hand side

}

bool QYL(string y) {

if ((y.length( ) % 2) = = 0) return (yes); else return(no);

}

PT

QH,y

QL

Input and Output of PT *PT

QH,y

QL

Example 1 *Input to PT

Program QH

bool main(unsigned y) {

if (y ==5) return yes;

else if (y ==4) return no;

else while (1>0) {};

}

Input y

5

Output of PT

Program QL

bool QH(unsigned y) {

if (y ==5) return yes;

else if (y ==4) return no;

else while (1>0) {};

}

bool QYL(string z) {

if ((z.length % 2) == 0) return (yes) else return (no);

}

bool main(string z) {

unsigned y = 5;

QH(y);

return (QYL(z));

}

PT

QH,y

QL

Example 2Input to PT

Program QH

bool main(unsigned y) {

if (y ==5) return yes;

else if (y ==4) return no;

else while (1>0) {};

}

Input y

3

Output of PT

Program QL

bool QH(unsigned y) {

if (y ==5) return yes;

else if (y ==4) return no;

else while (1>0) {};

}

bool QYL(string z) {

if ((z.length % 2) == 0) return (yes) else return (no);

}

bool main(string z) {

unsigned y = 3;

QH(y);

return (QYL(z));

}

QH,y

QL

Declaration of PTYes/No

PL

PT

PH

- What is the return type of PT?
- Type program1 (with one input of type string)

- What are the input parameters of PT?
- The same as the input parameters to H; in this case,
- type program2 (with one input of type unsigned int)
- unsigned int (input type to program2)
program1 main(program2 QH, unsigned y)

- The same as the input parameters to H; in this case,

QH,y

QL

Yes/No

PL

PT

PH

program1 main(program2 P, unsigned y) {

/* Will be viewing types program1 and program2 as STRINGS over the program alphabet SP */

program1 QL = replace-main-with-QH(P);

/* Insert line break */

QL += “\n”;

/* Insert QYL */

QL += “bool QYL(string z) {\n \t if ((z.length % 2) == 0) return (yes) else return (no);\n }”;

/* Add main routine of QL */

QL += “bool main(string z) {\n\t”; /* determined by L */

QL += “unsigned y =”

QL += convert-to-string(y);

QL += “;\n\t QH(y)\n\t return(QYL(z));\n}”;

return(QL);

}

program1 replace-main-with-QH(program2 P) /* Details hidden */

string convert-to-string(unsigned y) /* Details hidden */

QH,y

QL

Yes/No

PL

PT

PH

PT

code

for QYL

Y/N

QYL

y

start

halt

QH

QL

QH

z

QYL

PT

Y/N

unsigned y

PT in actionProgram QH

bool main(unsigned y) {

if (y ==5) return yes;

else if (y ==4) return no;

else while (1>0) {};

}

Input y

5

Program QL

bool QH(unsigned y) {

if (y ==5) return yes;

else if (y ==4) return no;

else while (1>0) {};

}

bool QYL(string z) {

if ((z.length % 2) == 0) return (yes) else return (no);

}

bool main(string z) {

unsigned y = 5;

QH(y);

return (QYL(z));

}

How to choose QYL or QNL

If QH, y is a no input to the Halting problem

Program QL

bool main(string z) {

QH(y); /* ignore return value */

return(Q?L(z)); /* yes or no? */

}

bool QH(unsigned x) {

/* comes from left-hand side

}

bool Q?L(string y) {

}

Start with no input for H- QHloops on y

- Thus Y(QL) = {}

- Determine if this makes QL a no or yes input instance to L

If QH, y is a no input to the Halting problem

- Now choose a QYL (or QNL) that is a yes (or no) input instance to L

- Program QL
- bool main(string z) {
- QH(y); /* ignore return value */
- return(QYL(z)); /* yes */

- }
- bool QH(unsigned x) {
- /* comes from left-hand side

- }
- bool QYL(string y) {
- }

- bool main(string z) {

- QHloops on y

- Thus Y(QL) = {}

- Determine if this makes QL a no or yes input instance to L

If QH, y is a no input to the Halting problem

- Now choose a QYL (or QNL) that is a yes (or no) input instance to L

- Program QL
- bool main(string z) {
- QH(y); /* ignore return value */
- return(QYL(z)); /* yes */

- }
- bool QH(unsigned x) {
- /* comes from left-hand side

- }
- bool QYL(string y) {
- if ((y.length( ) % 2) = = 0) return (yes);
- else return (no);
- }

- bool main(string z) {

- QHloops on y

- Thus Y(QL) = {}

- Determine if this makes QL a no or yes input instance to L

Possible shortcut

- Program QL
- bool main(string z) {
- QH(y); /* ignore return value */
- return(QYL(z)); /* yes */
- }
- bool QH(unsigned x) {
- /* comes from left-hand side

- }
- bool QYL(string y) {
- if ((y.length( ) % 2) = = 0) return (yes);
- else return (no);
- }

- Program QL
- bool main(string z) {
- QH(y); /* ignore return value */
- if ((z.length( ) % 2) = = 0) return (yes);
- else return (no);
- }
- bool QH(unsigned x) {
- /* comes from left-hand side

- }

Input

Program QH that has one input of type unsigned int

non-negative integer y that is input to program QH

Yes/No Question

Does QH halt on y?

Target Problem L

Input

Program QL that has one input of type string

Yes/No question

Is Y(QL) finite?

Assume program PL solves L

Problem DefinitionsIf QH, y is a no input to the Halting problem

Program QL

bool main(string z) {

QH(y); /* ignore return value */

return(Q?L(z)); /* yes or no? */

}

bool QH(unsigned x) {

/* comes from left-hand side

}

bool Q?L(string y) {

}

Start with no input for H- QHloops on y

- Thus Y(QL) = {}

- Determine if this makes QL a no or yes input instance to L

If QH, y is a no input to the Halting problem

Program QL

bool main(string z) {

QH(y); /* ignore return value */

return(QNL(z));/* no */

}

bool QH(unsigned x) {

/* comes from left-hand side

}

bool QNL(string y) {

}

- Now choose a QYL (or QNL) that is a yes (or no) input instance to L

- QHloops on y

- Thus Y(QL) = {}

- Determine if this makes QL a no or yes input instance to L

If QH, y is a no input to the Halting problem

Program QL

bool main(string z) {

QH(y); /* ignore return value */

return(QNL(z));/* no */

}

bool QH(unsigned x) {

/* comes from left-hand side

}

bool QNL(string y) {

if ((y.length( ) % 2) = = 0) return(yes);

else return(no);

}

- Now choose a QYL (or QNL) that is a yes (or no) input instance to L

- QHloops on y

- Thus Y(QL) = {}

- Determine if this makes QL a no or yes input instance to L

4 possibilities

Problem Setup

- Input of Transformation
- Program QH, unsigned x

- Output of Transformation
- Program QL
- bool main(string z) {
- QH(y); /* ignore return value */
- return(QYL(z)); /* yes or no */

- }
- bool QH(unsigned x) {}
- bool QYL(string y) {
- if ((y.length( ) % 2) = = 0) return (yes);
- else return (no);
- }

- Problem L
- Input: Program P
- Yes/No Question: Is Y(P) = {aa}?

- Question: Is the transformation on the left an answer-preserving or answer-reversing input transformation from H to problem L?

Key Step

- Input of Transformation
- Program QH, unsigned x

- Output of Transformation
- Program QL
- bool main(string z) {
- QH(y); /* ignore return value */
- return(QYL(z)); /* yes or no */

- }
- bool QH(unsigned x) {}
- bool QYL(string y) {
- if ((y.length( ) % 2) = = 0) return (yes);
- else return (no);
- }

- Problem L
- Input: Program P
- Yes/No Question: Is Y(P) = {aa}?

- The output of the transformation is the input to the problem.
- Plug QL in for program P above
- Is Y(QL) = {aa}?

Is Y(QL) = {aa}?

- Input of Transformation
- Program QH, unsigned x

- Output of Transformation
- Program QL
- bool main(string z) {
- QH(y); /* ignore return value */
- return(QYL(z)); /* yes or no */

- }
- bool QH(unsigned x) {}
- bool QYL(string y) {
- if ((y.length( ) % 2) = = 0) return (yes);
- else return (no);
- }

- Problem L
- Input: Program P
- Yes/No Question: Is Y(P) = {aa}?

- Analysis
- If QH loops on x, Y(QL)={}
- No input to H creates a QL that is a no input for L
- If QH halts on x, Y(QL) = {even length strings}
- Yes input to H creates a QL that is a no input for L

- Transformation does not work
- All inputs map to no inputs

Three other problems

- Input of Transformation
- Program QH, unsigned x

- Output of Transformation
- Program QL
- bool main(string z) {
- QH(y); /* ignore return value */
- return(QYL(z)); /* yes or no */

- }
- bool QH(unsigned x) {}
- bool QYL(string y) {
- if ((y.length( ) % 2) = = 0) return (yes);
- else return (no);
- }

- Problem L1
- Input: Program P
- Yes/No Question: Is Y(P) infinite?

- Problem L2
- Input: Program P
- Yes/No Question: Is Y(P) finite?

- Problem L3
- Input: Program P
- Yes/No Question: Is Y(P) = {} or is Y(P) infinite?

Is Y(QL) infinite?

- Input of Transformation
- Program QH, unsigned x

- Output of Transformation
- Program QL
- bool main(string z) {
- QH(y); /* ignore return value */
- return(QYL(z)); /* yes or no */

- }
- bool QH(unsigned x) {}
- bool QYL(string y) {
- if ((y.length( ) % 2) = = 0) return (yes);
- else return (no);
- }

- Problem L1
- Input: Program P
- Yes/No Question: Is Y(P) infinite?

- Analysis
- If QH loops on x, Y(QL)={}
- No input to H creates a QL that is a no input for L
- If QH halts on x, Y(QL) = {even length strings}
- Yes input to H creates a QL that is a yes input for L

- Transformation works
- Answer-preserving

Is Y(QL) finite?

- Input of Transformation
- Program QH, unsigned x

- Output of Transformation
- Program QL
- bool main(string z) {
- QH(y); /* ignore return value */
- return(QYL(z)); /* yes or no */

- }
- bool QH(unsigned x) {}
- bool QYL(string y) {
- if ((y.length( ) % 2) = = 0) return (yes);
- else return (no);
- }

- Problem L2
- Input: Program P
- Yes/No Question: Is Y(P) finite?

- Analysis
- If QH loops on x, Y(QL)={}
- No input to H creates a QL that is a yes input for L
- If QH halts on x, Y(QL) = {even length strings}
- Yes input to H creates a QL that is a no input for L

- Transformation works
- Answer-reversing

Is Y(QL) = {} or is Y(QL) infinite?

- Input of Transformation
- Program QH, unsigned x

- Output of Transformation
- Program QL
- bool main(string z) {
- QH(y); /* ignore return value */
- return(QYL(z)); /* yes or no */

- }
- bool QH(unsigned x) {}
- bool QYL(string y) {
- if ((y.length( ) % 2) = = 0) return (yes);
- else return (no);
- }

- Problem L3
- Input: Program P
- Yes/No Question: Is Y(P) = {} or is Y(P) infinite?

- Analysis
- If QH loops on x, Y(QL)={}
- No input to H creates a QL that is a yes input for L
- If QH halts on x, Y(QL) = {even length strings}
- Yes input to H creates a QL that is a yes input for L

- Transformation does not work
- All inputs map to yes inputs

Download Presentation

Connecting to Server..