1 / 34

Biology

Biolo Mr. Karns y M. Biology. Biotechnology. 13-2 Manipulating DNA. The Tools of Molecular Biology. The Tools of Molecular Biology How do scientists make changes to DNA?. The Tools of Molecular Biology.

bethan
Download Presentation

Biology

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. BioloMr. Karnsy M Biology Biotechnology

  2. 13-2 Manipulating DNA

  3. The Tools of Molecular Biology • The Tools of Molecular Biology • How do scientists make changes to DNA?

  4. The Tools of Molecular Biology • Scientists use their knowledge of the structure of DNA and its chemical properties to study and change DNA molecules.

  5. The Tools of Molecular Biology • Scientists use different techniques to: • extract DNA from cells • cut DNA into smaller pieces • identify the sequence of bases in a DNA molecule • make unlimited copies of DNA

  6. The Tools of Molecular Biology • In genetic engineering, biologists make changes in the DNA code of a living organism.

  7. The Tools of Molecular Biology • DNA Extraction • DNA can be extracted from most cells by a simple chemical procedure. • The cells are opened and the DNA is separated from the other cell parts.

  8. The Tools of Molecular Biology • Cutting DNA  • Most DNA molecules are too large to be analyzed, so biologists cut them into smaller fragments using restriction enzymes. • The proper name is restriction endonucleases, but retsriction enzymes are the common term.

  9. The Tools of Molecular Biology • Each restriction enzyme cuts DNA at a specific sequence of nucleotides. Recognition sequences DNA sequence Restriction enzyme EcoR I cuts the DNA into fragments Sticky end

  10. The Tools of Molecular Biology • A restriction enzyme will cut a DNA sequence only if it matches the sequence precisely. Recognition sequences DNA sequence Restriction enzyme EcoR I cuts the DNA into fragments Sticky end

  11. The Tools of Molecular Biology • Separating DNA   • In gel electrophoresis, DNA fragments are placed at one end of a porous gel, and an electric voltage is applied to the gel. • When the power is turned on, the negatively-charged DNA molecules move toward the positive end of the gel. • The red terminal is positive. Black is negative.

  12. The Tools of Molecular Biology • Gel electrophoresis can be used to compare the genomes of different organisms or different individuals. • It can also be used to locate and identify one particular gene in an individual's genome.

  13. The Tools of Molecular Biology Power source DNA plus restriction enzyme Longer fragments Shorter fragments Mixture of DNA fragments Gel Gel Electrophoresis

  14. The Tools of Molecular Biology • First, restriction enzymes cut DNA into fragments. • The DNA fragments are poured into wells on a gel. DNA plus restriction enzyme Mixture of DNA fragments Gel Gel Electrophoresis

  15. The Tools of Molecular Biology Power source • An electric voltage is applied to the gel. This moves the DNA fragments across the gel. • The smaller the DNA fragment, the faster and farther it will move across the gel. Gel Electrophoresis

  16. The Tools of Molecular Biology • Based on size, the DNA fragments make a pattern of bands on the gel. • These bands can then be compared with other samples of DNA. Longer fragments Shorter fragments Gel Electrophoresis

  17. Using the DNA Sequence • Using the DNA Sequence • Knowing the sequence of an organism’s DNA allows researchers to study specific genes, to compare them with the genes of other organisms, and to try to discover the functions of different genes and gene combinations.

  18. Using the DNA Sequence • Reading the Sequence • In DNA sequencing, a complementary DNA strand is made using a small proportion of fluorescently labeled nucleotides.

  19. Using the DNA Sequence DNA strand with unknown base sequence • DNA Sequencing Dye molecules DNA fragments synthesized using unknown strand as a template

  20. Using the DNA Sequence • Each time a labeled nucleotide is added, it stops the process of replication, producing a short color-coded DNA fragment. • When the mixture of fragments is separated on a gel, the DNA sequence can be read.

  21. Using the DNA Sequence Base sequence as “read” from the order of the dye bands on the gel from bottom to top: T G C A C Electrophoresis gel

  22. Using the DNA Sequence • Cutting and Pasting  • Short sequences of DNA can be assembled using DNA synthesizers. • “Synthetic” sequences can be joined to “natural” sequences using enzymes that splice DNA together.

  23. Using the DNA Sequence • These enzymes also make it possible to take a gene from one organism and attach it to the DNA of another organism. • Such DNA molecules are sometimes called recombinant DNA.

  24. Using the DNA Sequence • Making Copies  • Polymerase chain reaction (PCR) is a technique that allows biologists to make copies of genes. • A biologist adds short pieces of DNA that are complementary to portions of the sequence.

  25. Using the DNA Sequence • DNA is heated to separate its two strands, then cooled to allow the primers to bind to single-stranded DNA. • DNA polymerase starts making copies of the region between the primers. • This is used when only a small sample of DNA is available, but more copies are needed for analysis. Forensics uses PCR a lot to “amplify” DNA.

  26. Using the DNA Sequence Polymerase Chain Reaction (PCR) DNA heated to separate strands DNA polymerase adds complementary strand DNA fragment to be copied PCR cycles 1 2 3 4 5 etc. DNA copies 1 2 4 8 16 etc.

  27. 13-2

  28. 13-2 • Restriction enzymes are used to • extract DNA. • cut DNA. • separate DNA. • replicate DNA.

  29. 13-2 • During gel electrophoresis, the smaller the DNA fragment is, the • more slowly it moves. • heavier it is. • more quickly it moves. • darker it stains.

  30. 13-2 • The DNA polymerase enzyme Kary Mullis found in bacteria living in the hot springs of Yellowstone National Park illustrates • genetic engineering. • the importance of biodiversity to biotechnology. • the polymerase chain reaction. • selective breeding.

  31. 13-2 • A particular restriction enzyme is used to • cut up DNA in random locations. • cut DNA at a specific nucleotide sequence. • extract DNA from cells. • separate negatively charged DNA molecules.

  32. 13-2 • During gel electrophoresis, DNA fragments become separated because • multiple copies of DNA are made. • recombinant DNA is formed. • DNA molecules are negatively charged. • smaller DNA molecules move faster than larger fragments.

  33. END OF SECTION

More Related