1 / 40

Strategies, Competences and Objectives

5 July 2006 ENEA Sede Roma. CRESCO Subproject III 4 : CRESCO-SOC-COG Socio-Cognitive Modelling for Complex Socio-Technological Networks ( Modellistica delle Reti Complesse viste come  Aggregati Socio-Tecnologici e Cognitivi). Strategies, Competences and Objectives.

bernad
Download Presentation

Strategies, Competences and Objectives

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 5 July 2006 ENEA Sede Roma CRESCO Subproject III 4:CRESCO-SOC-COGSocio-Cognitive Modelling for Complex Socio-Technological Networks(Modellistica delle Reti Complesse viste come  Aggregati Socio-Tecnologici e Cognitivi) Strategies, Competences and Objectives Alessandro D'Ausilio (ECONA), Massimiliano Caramia (Tor Vergata) Adam Maria Gadomski (ENEA), Alessandro Londei (ECONA), Marta Olivetti-Belardinelli (ECONA) English Extended Version (Ed. A.M.Gadomski) 20 November 2006

  2. CRESCO, Sottoprogetto III 4:CRESCO-SOC-COG • 1. Objectives and GeneralStrategy (A.M.Gadomski) • 2. ECONA(A. Londei, M. Olivetti-Belardinelli, D'Ausilio ) • - general information • - competences • - specific research interests • - state of the art and the contribution • 3. TOR VERGATA( M. Caramia) • - general information • - competences • - specific research interests • - state of the art and the contribution • ENEA(A.M.Gadomski) • - competences • - project planning • - examples

  3. CRESCO, Sottoprogetto III 4:CRESCO-SOC-COG CRESCOis a large ENEA's and Italian Project focused on the research on complex systems in the different areas of science and technologies. It is based on the development of the advanced High Performance Computing infrastructure ENEA grid. CRESCO (Centro Computazionale di RicErca sui Sistemi Complessi, Computational Research Center for Complex Systems) is  co-funded by the Italian Ministry of Education, University and Research (MIUR). The CRESCO project is functionally built around the HPC platform, through the creation of a number of scientific thematic laboratories, such as: Computing Science Laboratory,  Computational Systems Biology Laboratory, and Complex Networks Systems Laboratory - dealing with the complexity of information technology networks and human organizations decisional dependences in large national critical services infrastructures. A major ambition of this  multi-discipline  project is to allow an inter-disciplinary flow of methods and ideas related to the network-based modeling and simulation of complex systems and their aggregates.

  4. Sottoprogetto III 4:CRESCO-SOC-COG Objectives and General Strategy CRESCO-SOC-COG is the activity focused on the research on the vulnerabilities of human factors in frame  of  networked structures of high-risk large human organizations. This new challenging cross-disciplinary objective requires a qualitatively new systemic conceptualization tool for human-technology systems, therefore, the socio-cognitive methodology involved  is based on the main frameworks of the holistic TOGA meta-theory. Goal Research and development of the ontology and socio-cognitive and socio-technological models which should enable: • Domain-independent computational modelling and demonstrative simulation of socio-cognitive managerial high-risk decisional processes and their interdependences. Especially in the case of the collaborative emergency management for the protection of Large Complex Critical Infrastructures (LCCI). • ModelIing and analysis of the socio-cognitive vulnerabilities of  these organizations.

  5. Decisional Politic Organs Top-Down Vision : Socio-Technological network for the management of Large Critical Technological Infrastructures Local administrative, govern and voluntary organizations LCCI Owners Large Technological Networks- LCCIs Utenti di GRT Sottoprogetto III 4:CRESCO-SOC-COG Objectives and General Strategy Identification of the Domain

  6. Sub-project III 4:CRESCO-SOC-COG Objectives and General Strategy “Spetroscopy” of the conceptualization layers Identification Layers: Sub-layers: • Physical Layer • Cyber/information Layer • Organization / Management Layer Cognitive –Sub-simbolic Layer Socio-cognitive Simbolic Layer Inter-organization Layer Intra-organizational Layer Their interfaces

  7. Sottoprogetto III 4: CRESCO-SOC-COG (Ferov di Stato, L’espresso, 2006) Multimedial Interfaces between Cyber and Organization Layer Tasks Separation Topological & process data Cyber Layer Tasks & Actions data Organization Layer Vocal Communication Written Tasks & Inform.

  8. Sottoprogetto III 4:CRESCO-SOC-COG Conceptual Scenario-based Interface: An introduction to the CIP (Critical Infrastructure Protection) ontology Operator is an autonomous informer and executor, see UMP. Operators are human interfaces between Cyber and Organization Layers. Organization Layer is activated when the situation is over the (routine & emergency) competences of the operators Organization decisions provide context and constrains for next organizational decisions. Adam M. Gadomski,CAMO – ENEA – RC Casaccia

  9. Organiz. A Organiz. B D-M autonomo … R5 Subsymbolic D-M zoom R1 Symbolic D-M R3 R6 D-M collaborativo R2 R4 R7 Simulation: Piattaforme parallele software di supporto D-M : tecn. “multiagent” (MAS) Reti di Grande Infrastrutture Tecnologiche dei Servizi Nodi esecutivi Nodi decisionali manageriali Ri Legenda: Unita umane supportate dal IT Ri – ruolo i Sottoprogetto III 4:CRESCO-SOC-COG Socio-Cognitive Domain Socio-Technological Domain Socio-Cognitive and Socio-technolo- gical layers Separation of two conceptual domains of research.

  10. Sottoprogetto III 4:CRESCO-SOC-COG Strategia Generale :ORGANIZATION COMPLEXITY Multi-dimensional attributes space Complex network of interactions Continuous & Discrete Dynamics Interactions with dynamic physical & social environment Intelligent knowledge-based and interest-based human nodes Autonomy of nodes Emotional and Body contribution components Physics based statist. models (primitive intelligence) New modeling paradigms (high intelligence) Cognitive factors: ill measurable, observable and monitored Project requires a new innovative computational systemic methodology for the modeling. Adam M. Gadomski,CAMO – ENEA – RC Casaccia

  11. Modelling Tool: Top-down Object-based Goal-oriented Approach TOGA meta-theory • TOGA is a formal goal-oriented knowledge ordering meta-theory, its objective is to enable design of complex systems & their computer simulation. It has three basic components: • - Theory of Abstract Objects (TAO) is a first level and a basic domain independent conceptualization system and a consensus building platform; • - Knowledge Conceptualization System (KNOCS), It includes TOGA’s ontology, i.e. axiomatic assumptions and basic conceptualization frameworks for the definition and decompositions of the real-world problem into an intelligent agent (IA) and domains of IA goal-oriented activities, i.e. the triple: (Intelligent Entity, Environment, Interactions) • Methodological Rules System (MRUS) for the specification (if not existing yet) or identification (if existing) of complex systems and problems; it indicates how TAO and KNOCS have to be used during the conceptual identification, specification and solution of real word problems. • The KNOCS meta-frameworks includes four modeling paradigms: • 1. Universal  Reasoning Frame Paradigm (URP), it is based on the IPK (Information, Preferences, Knowledge) architecture. • 2. Universal  Management Paradigm (UMP), it includes management functional definition and a conceptualization of the context of the managerial role. • 3. SPG Universal Domain Paradigm (UDP),  it is a framework of the conceptualization of the relation between an organization and its foundation-goal in terms of: systems, processes, functions and design-goals. • 4. WAG Universal Activity Paradigm (UAP) , conceptualization of the relation between a problem world and a goal of intervention of intelligent agent . [CNIP’06 Conf.]

  12. Sottoprogetto III 4:CRESCO-SOC-COG Cognitive complex networks modeling First project cog-engineering hypothesis: Abstract Cognitive Architecture of Decision-Maker is based on 4 types of reasoning processes reciprocally interacting and developed on the recursive, incremental and multi-layered IPK based network (with a fractal property ). TOGA I P K Domains of possible research

  13. SUPERVISOR/ COORDINATOR tasks information cooperation MANAGER COOPERATING MANAGER expertises ADVISOR Knowledge & Preferences repository with the same relative internal structure information tasks INFORMER EXECUTOR DOMAIN OF ACTIVITY AND MANAGER’s GOAL-DOMAIN Sottoprogetto III 4:CRESCO-SOC-COG Organizational complex networks modeling Second project engineering hypothesis:Universal Management Paradigm (UMP) defines the manager environment from the subjective perspective of a pre-selected decision-making manager [4] which can be projected on real role-networks of human organizations. Recursive incremental model

  14. Using UMP SUPERVISOR Vulnerabilities tasks information cooperation MANAGER COOPERATING MANAGER expertises ADVISOR Knowledge Preferences Domain of Activity information tasks The same structure n I INFORMER EXECUTOR P K goal Domain of management (Domain of activities) Sottoprogetto III 4:CRESCO-SOC-COG Identification of Vulnerability Identification of Vulnerability The presented modeling frames enable identification of different types of organizational vulnerability: on individual levels, for group d-m, and cooperative intra-organizational types. Using IPK • We may distinguish: • - Not sufficient information • - Not proper preferences • Not adequate competences (knowledge). • Improper communication

  15. Efficacy Proper activity phase Re-organization Ef1 Vulnerability Ef2 Vulnerability Crisis Ef0 Pathological organization Healthy organization Time Organization in recovery Self-org phase Sottoprogetto III 4:CRESCO-SOC-COG Identification of Vulnerability Human organizationis a system/network with explicitly established reciprocal dependencies between people, which, according to their competences, collaborate for achieving common objectives or realize predefined missions. The concepts: vulnerability, crisis and emergency are well visible in this generic h-orgnization life-cycle picture where they can be, in different manner, allocated to the organization phases. H-Organization Life-cycle Foundation Self-organization Proper Activity Re-organization Proper Activity Qualitative illustration Gadomski,2005, • We distinguish three necessary critical efficacy levels: • Survive efficacy, Ef0.- Emergency critical efficacy, Ef1 - Routine critical efficacy, Ef2 • (enables a bureaucratic functioning)

  16. Sottoprogetto III 4:CRESCO-SOC-COG Partners Top Tasks Allocation Cognitive Layer ECONA Integration Methodology Socio-cognitive Layer ENEA DII - TOR VERGATA Socio-technological Layer

  17. Sottoprogetto III 4:CRESCO-SOC-COG ECONA (1) Interuniversity Center for Research on Cognitive Processing in Natural and Artificial Systems Informazione Generale ECONA collaborates with research projects (including projects financed byMURST, CNR, the EEC and the European Science Foundation) and covers the following areas: Psychology of cognitive processes Mental process models Neural networks and genetic programming Non-linear dynamic behavior Natural language processing Logic, languages and methods in programming Psychophysiology and neuropsychology Pedagogic communication Education with intelligent processor support Probabilistic approaches to situations of uncertainty Learning processes ECONA is an inter-university and cross-disciplinary center providing teaching staff and researchers in which participate 12 Italian universities. It is focused on the studies of cognitive processes and collaborates on researchprojects and their practical applications. Members of ECONA represent inter-disciplinary competences: psychology, philosophy, physics, computer science, mathematics, engineering, medicine and organization sciences.

  18. Sottoprogetto III 4:CRESCO-SOC-COG ECONA (2): Cognitive Perspective on Decision Making Decision-Making Tempo ridotto Complessità della rappresentazione problemica Stress e Responsabilità ERRORE Ma se non esiste una risposta sempre “Corretta”?

  19. Sottoprogetto III 4:CRESCO-SOC-COG ECONA (3) IMPLEMENTATION • Situazioni artificiali e semplificate > controllo < aderenza realtà • Situazioni reali < controllo > aderenza realtà

  20. Sottoprogetto III 4:CRESCO-SOC-COG ECONA (4) SCOPI Individuare classi di risposte divise per tipologie di personalità DECISONALI • Strategie Analitiche VS. Globali (Complexity) • Fast VS Slow responder (Time) • Strategie di Coping (Stress, responsibility)

  21. Sottoprogetto III 4:CRESCO-SOC-COG ECONA (5) QUANDO - COME - PERCHE’ si commettono errori • Previsione errori “macchina” uomo • Supporto decisionale situazioni critiche • Controllo in real-time • Simulazione effetti della decisione

  22. SOM Cluster Analysis Behavioral prototypes Sottoprogetto III 4:CRESCO-SOC-COG ECONA (6) from TOGA from 

  23. Genetic algorithms genetic population fitness crossing-over mutations next population Plasticity selection Architecture selection Sottoprogetto III 4:CRESCO-SOC-COG ECONA (7) Automatic Model Generation Possibility

  24. Sottoprogetto III 4:CRESCO-SOC-COG ECONA (8) Automatic Model Generation Possibility • selection of the properties of artificial agents whose behavior is compatible with natural observation • decisional-making is under/(driven-by) environmental pressure • determination of suitable recurrent neural architectures for best results by means of genetic algorithms • analysis of neural spatial and functional distribution for detecting functional areas involved in decisional task • extension to socio-cognitive networks of evolved agents

  25. Fastness Efficency Sottoprogetto III 4:CRESCO-SOC-COG ECONA (9) From Cognitive Models to Socio-Cognitive Networks Decisional agents genetic modelization Behavioral support to psychological and artificial observations

  26. Sottoprogetto III 4:CRESCO-SOC-COG Dipartimento di Ingegneria dell’Impresa Università di Roma “Tor Vergata” • Competenze e Aree principali di ricerca • Modellazione dei processi gestionali • Ottimizzazione e simulazione di sistemi complessi • Ottimizzazione su reti • Metodi e modelli per il supporto alle decisioni • Logistica e Produzione

  27. Sottoprogetto III 4: CRESCO-SOC-COG DII - TOR VERGATA • Interesi particolari riferiti ai goal del progetto • Ottimizzazione in ambiente on-line • Modellazione di sistemi di produzione-servizio tramite agenti autonomi • Modellazione di problemi decisionali in presenza di più decisori con presenza o assenza di cooperazione e/o negoziazione • Simulazione di sistemi organizzati in scenari tattici e/o operativi • Risorse:professori, post-doc, laureandi

  28. Sottoprogetto III 4: CRESCO-SOC-COG DII - TOR VERGATA • Esperienza in progetti su argomenti correlati: Progetto Strategico CNR su “La gestione delle emergenze nelle organizzazioni complesse”; 9 unità perative coordinate da Tor Vergata; anni 2000-2002. • Conoscenza e uso dei diversi Strumenti di Progettazione Concettuale. ESPERIENZA PREGRESSA

  29. Sottoprogetto III 4: CRESCO-SOC-COG DII - TOR VERGATA: Case Based Analysis e Modellazione • Analisi di casi reali scelti e la modellazione sintetica (organizational networks) • Simulazione (tipo demo) di casi di studio relativi a situazioni di crisi rilevanti in cooperazione tra organizzazioni complesse, al fine di individuare le cause di vulnerabilità e definire le azioni correttive al loro interno. • Attività successive proposte: prototipizzazione del tool di simulazione con possibilità da parte dell’utente di effettuare opportuni tuning del sistema per il suo controllo. Possible Contributions

  30. Sottoprogetto III 4:CRESCO-SOC-COG ENEA • competences • planning • esamples Keywords: Systemistic Modelling and Top-down approach Socio-Cognitive Engineering Meta-Knowledge Engineering & Management Decision-Making Intelligence Ontology Building Methodology Abstract Intelligent Agents Organizational Intelligence Organizational Vulnerability Simulation Modelling

  31. Sottoprogetto III 4: CRESCO-SOC-COG ENEA • Data & Modeling phase • Designing & Implementing phase • Improvement & Validation phase PLANNING • Data & Modeling phase • - Data acquisition • - Proper modeling • - Model validation 2. Designing & Implementing phase - Parallelization - Implementation - Validation 3. Improvement & Validation phase - Improvements - Test cases - Validation

  32. Sub-project III 4: CRESCO-SOC-COG ENEA Data Acquisition: EXPERIMENTS For Cognive Decision-Making For Organizational Decision-Making Identification of Socio-Cognitive Vulnerabilities

  33. Sottoprogetto III 4: CRESCO-SOC-COG EXAMPLE: an identification of the Incidents and their main observables (Key factors) Source: L’espresso, 6 Luglio 2006

  34. Sottoprogetto III 4: CRESCO-SOC-COG METHODOLOGICAL Framework We have: Experimental observables and Theory observables. • EXAMPLE: an identification of the key factors of human errors: …IPK 65% Experimental observables Experimental factors (key factors) Preference Domain Model Informazioni Theory Ontology Conoscenza Theory observables MODEL SPECIALIZATION SIMULATIOR DESIGN Source: L’espresso, 6 Luglio 2006

  35. Sub-project III 4: CRESCO-SOC-COG ENEA Analyzed Test Cases 1. Blackout Italy/Suisse , 28 september 2003 2. Chernobyl disaster 3. Katrina hurricane 4. Airport Linate accident 5. Tsunami: international scale catastrophe –Indian Ocean P,Sargeni, L’ergonomia cognitiva nella vulnerabilità delle organizzazioni: la prospettiva socio-cognitiva di TOGA. Facolta Science di Comunicazione, Univ. La Sapienza.,ENEA, 2006.

  36. Ruoli Casi Supervisor Manager Cooperating Manager Advisor Informer Executor Italian Blackout Chernobyl Linate Katrina Tsunami Sub-project III 4: CRESCO-SOC-COG Preliminary Test Cases Results Identification of vulnerability on the IPK level and according to the UMP roles. Legenda: Il problema si è verificato sul livello delle InformazioniNessun valore dominante Il problema si è verificato sul livello delle Preferenze Il problema si è verificato sul livello delle Conoscenze [P,Sargeni ]

  37. Sub-project III 4: CRESCO-SOC-COG Possible resultshypotheses • How, is possible to improve organiz, robustness/(decrease vulnerability)? • Hypotheses: • by modifications of organization architecture • by modifications of roles (competences, responsibility, power) • by increasing of the consciousness on the emotional components of DM • - computer support, automatic distribution IPK in organization according • to the organizational roles of nodes. • - Providing these structures more transparent • - Modification and adaptation of distributed DM procedures

  38. Sub-project III 4: CRESCO-SOC-COG References • Jens Rassmussen, 1988.A cognitive engineering approach to the modeling of decision making and its organization in process control, emergency management, CAD/CAM, office systems, and library systems.Advances in Man-machine Systems Research 4: 165--243 • A.M. Gadomski (2004). Humam Organization Crisis: Identification, Response & Recovery, http://192.107.74.146/gad-crisis.htm • A.M. Gadomski, 2002, Systemic Approach for the Sophocles Global Specification,. http://hid.casaccia.enea.it/RepSoph-v10.pdf http://erg4146.casaccia.enea.it/wwwerg26701/Gad-toga.htm • R.J. Sternberg, Triarchic Theory of Intelligence,. • Student theses: D. Ricciardi, Analisi della vulnerabilità del business aziendale e del Knowledge Management secondo la prospettiva della teoria TOGA, 2005,, Univ. Tor Vergata. P,Sargeni, L’ergonomia cognitiva nella vulnerabilità delle organizzazioni: la prospettiva socio-cognitiva di TOGA. Facolta Science di Comunicazione, Univ. La Sapienza, 2006. • Selected ENEA’s materials of the IRRIIS Project, 2006 • L’ESPRESSO., N.26, 6 Lug. 2006 • Web: - Google search: CIIP, CIP, cognitive: http://www.google.it/search?hl=it&q=CIIP%2C+CIP%2C+cognitive&btnG=Cerca&meta= • the European co-ordination project on Critical Information Infrastructure Research Co-ordination. http://www.ci2rco.org/index.asp • http://w3.uniroma1.it/security/Eventi/Sciascia.pdf • www.cnipa.gov.it/site/_files/pres-MEROLAroma.PPT • Activity progress report: Relazione sulle attività svolte dall'ENEA -CAMO, 2005 : http://hid.casaccia.enea.it/activity2005.htm …

  39. Sub-project III 4: CRESCO-SOC-COG References ECONA DII-U.Tor Vergata

  40. Sub-project III 4: CRESCO-SOC-COG Grazie

More Related