Agenda
This presentation is the property of its rightful owner.
Sponsored Links
1 / 32

Agenda PowerPoint PPT Presentation


  • 87 Views
  • Uploaded on
  • Presentation posted in: General

Agenda. Informationer Supplerende litteratur ”Pitch-dag” den 4/3 Skalaer Bedst På Nettet skema Deskriptiv statistik Teori Små øvelser i Excel Dagens øvelser Skalaer Pitch-tale. Spørgeskema fra www.bedstpaanettet.dk. Eksempler på skalaer. Spørgsmål:

Download Presentation

Agenda

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Agenda

Agenda

  • Informationer

    • Supplerende litteratur

    • ”Pitch-dag” den 4/3

  • Skalaer

    • Bedst På Nettet skema

  • Deskriptiv statistik

    • Teori

    • Små øvelser i Excel

  • Dagens øvelser

    • Skalaer

    • Pitch-tale


Agenda

Spørgeskema fra www.bedstpaanettet.dk


Eksempler p skalaer

Eksempler på skalaer

Spørgsmål:

Hjemmesiden giver alt i alt et positivt helhedsindtryk

Mulige skalaer:


Udformning af skalaer

Udformning af skalaer

Valg ved udformning af skalaer skal der vælges …

Antal svarkategorier (2, 3, 4, 5, 6, 7, ...)

Lige eller ulige antal svarkategorier (= skal der være en midterkategori?)

Navne / symboler på svarkategorier

Rækkefølge (”positiv” først eller sidst)

Scoring af svarkategorier, f.eks. 5 = meget tilfreds og 1 = meget utilfreds


Validitet

Validitet

  • Validitet

    • Validitet, (af lat. validitas 'styrke'), gyldighed, korrekthed, sandhed. Inden for de empiriske videnskaber stilles krav om en målings validitet, dvs. at der måles det, man har til hensigt at måle. Kilde: Den Store Danske Encyklopædi.

Det vi har til hensigt at måle

Det vi faktisk måler


Operationalisering

Stress

Angst

Bekymring

Kompetencekrav

Kontrol

Flow zone

Afslapning

Kedsomhed

Kompetencer

Operationalisering

Def.: Flow er en tilstand, hvor man udnytter sine evner fuldt ud og er så opslugt af sine opgaver, at man glemmer tid og sted. Tilstanden bevirker stærke positive følelser, hvilket er kroppens belønning for, at man udnytter sine evner fuldt ud. (Professor Mihaly Csikszentmihalyi). I flow tilstanden er man maksimalt engageret og man udnytter sine kompetencer maksimalt.

1.1 Jeg ved hvad der forventes af mig på kurset.

1.2 Jeg føler mig fagligt "klædt på" til at løse opgaverne.

1.3 Jeg har tilstrækkeligt med faglige udfordringer.

1.4 Jeg har mulighed for at lære nyt.

1.5 Jeg har indflydelse på tilrette-læggelsen af mine opgaver.

1.6 Jeg har gode fysiske rammer for at løse mine opgaver (plads, lokaler, redskaber osv).


Exploring data with graphs and numerical summaries

Exploring Data with Graphs and Numerical Summaries

  • Calculating the mean

  • Calculating the median

  • Comparing the Mean & Median

  • Definition of Resistant


Mean gennemsnittet

Mean (gennemsnittet)

  • The mean is the sum of the observations divided by the number of observations

    • n betegner antallet af observationer (=stikprøvestørrelsen)

    • y1, y2, y3, … yi ,..., yn betegner de n observationer

    • betegner gennemsnittet

  • It is the center of mass. Do it in Excel


Median

Median

  • The median is the midpoint of the observations when they are ordered from the smallest to the largest (or from the largest to smallest)

  • Order observations

  • If the number of observations is:

    • Odd, then the median is the middle observation

    • Even, then the median is the average of the two middle observations


Median1

Median

1) Sort observations by size,

n = number of observations

______________________________

2,a) If n is odd, the median is observation (n+1)/2 down the list

n = 9

(n+1)/2 = 10/2 = 5

Median = 99

2,b) If n is even, the median is the mean of the two middle observations

n = 10 

(n+1)/2 = 5,5

Median = (99+101) /2 = 100


Comparing the mean and median

Comparing the Mean and Median

  • The mean and median of a symmetric distribution are close together,

  • For symmetric distributions, the mean is typically preferred because it takes the values of all observations into account


Comparing the mean and median1

Comparing the Mean and Median

  • In a skewed distribution, the mean is farther out in the long tail than is the median

    • For skewed distributions the median is preferred because it is better representative of a typical observation


Resistant measures

Resistant Measures

  • A numerical summary measure is resistant if extreme observations (outliers) have little, if any, influence on its value

    • The Median is resistant to outliers

    • The Mean is not resistant to outliers

  • Hvis I kun kan få én oplysning om løn-niveauet i en virksomhed med 4 ansatte, vil I så have gennemsnit eller median?


Exploring data with graphs and numerical summaries1

Exploring Data with Graphs and Numerical Summaries

  • Calculate the range (variationsbredden)

  • Calculate the standard deviation

  • Know the properties of the standard deviation, s

  • Know how to interpret the standard deviation, s: The Empirical Rule


Range

Range

  • One way to measure the spread is to calculate the range. The range is the difference between the largest and smallest values in the data set;

    Range = max  min

  • The range is strongly affected by outliers


Standard deviation

Standard Deviation

  • Find the mean

  • Find the deviation of each value from the mean

  • Square the deviations

  • Sum the squared deviations

  • Divide the sum by n-1


Standard deviation1

Standard Deviation

Gives a measure of variation by summarizing the deviations of each observation from the mean and calculating an adjusted averageof these deviations.


Properties of the standard deviation

Properties of the Standard Deviation

  • s measures the spread of the data

  • s = 0 only when all observations have the same value, otherwise s > 0, As the spread of the data increases, s gets larger,

  • s has the same units of measurement as the original observations. The variance=s2 has units that are squared.

  • s is not resistant. Strong skewness or a few outliers can greatly increase s.


Magnitude of s empirical rule

Magnitude of s: Empirical Rule


Exploring data with graphs and numerical summaries2

Exploring Data with Graphs and Numerical Summaries

  • Obtaining quartiles and the 5 number summary

  • Calculating interquartile range and detecting potential outliers

  • Drawing boxplots

  • Comparing Distributions


Percentile

Percentile

  • The pth percentile is a value such that p percent of the observations fall below or at that value


Finding quartiles

Finding Quartiles

  • Splits the data into four parts

    • Arrange the data in order

    • The median is the second quartile, Q2

    • The first quartile, Q1, is the median of the lower half of the observations

    • The third quartile, Q3, is the median of the upper half of the observations


Agenda

Measure of spread: quartiles

Quartiles divide a ranked data set

into four equal parts.

The first quartile, Q1, is the value in the sample that has 25% of the data at or below it and 75% above

The second quartile is the same as the median of a data set, 50% of the obs are above the median and 50% are below

The third quartile, Q3, is the value in the sample that has 75% of the data at or below it and 25% above

Q1= first quartile = 2,2

M = median = 3,4

Q3= third quartile = 4,35


Quartile example

Quartile Example

Find the first and third quartiles

Number of downloaded apps the last 10 days:

2 4 11 13 14 15 31 32 34 47

What is the correct answer?

  • Q1 = 2 Q3 = 47

  • Q1 = 12 Q3 = 31

  • Q1 = 11 Q3 = 32

  • Q1 =12 Q3 = 33


Calculating interquartile range

Calculating Interquartile range

  • The interquartile range is the distance between the third quartile and first quartile:

  • IQR = Q3  Q1

  • IQRgives spread of middle 50% of the data


5 number summary

5 Number Summary

  • The five-number summary of a dataset consists of the

    • Minimum value

    • First Quartile

    • Median

    • Third Quartile

    • Maximum value


Criteria for identifying an outlier

Criteria for identifying an outlier

  • An observation is a potential outlier if it falls more than 1,5 x IQR below the first quartile or more than 1,5 x IQR above the third quartile


Exploring data with graphs and numerical summaries3

Exploring Data with Graphs and Numerical Summaries

  • Distribution

  • Graphs for categorical data. Overvej:

    • Søjle diagram

    • Lagkage diagram

  • Graphs for quantitative data. Overvej :

    • Box-plot

    • Sum kurve


Boxplot

Boxplot

  • A box goes from the Q1 to Q3

  • A line is drawn inside the box at the median

  • A line goes from the lower end of the box to the smallest observation that is not a potential outlier and from the upper end of the box to the largest observation that is not a potential outlier

  • The potential outliers are shown separately


Comparing distributions

Comparing Distributions

Box Plots are useful for making graphical comparisons of two

or more distributions


Sum kurve

Sum kurve


Agenda1

Agenda

  • Informationer

    • Supplerende litteratur

    • ”Pitch-dag” den 4/3

  • Skalaer

    • Bedst På Nettet skema

  • Deskriptiv statistik

    • Teori

    • Små øvelser i Excel

  • Dagens øvelser

    • Pitch

    • Skalaer

    • Deskriptiv analyse


  • Login