Modulation of the Extratropical Circulation by Combined Activity of the Madden–Julian Oscillation ...
Sponsored Links
This presentation is the property of its rightful owner.
1 / 76

Lawrence C. Gloeckler and Dr. Paul E. Roundy PowerPoint PPT Presentation


  • 98 Views
  • Uploaded on
  • Presentation posted in: General

Modulation of the Extratropical Circulation by Combined Activity of the Madden–Julian Oscillation and Equatorial Rossby Waves. Lawrence C. Gloeckler and Dr. Paul E. Roundy Department of Atmospheric and Environmental Sciences, The University at Albany – SUNY

Download Presentation

Lawrence C. Gloeckler and Dr. Paul E. Roundy

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Modulation of the Extratropical Circulation by Combined Activity of the Madden–Julian Oscillation and Equatorial Rossby Waves

Lawrence C. Gloeckler and Dr. Paul E. Roundy

Department of Atmospheric and Environmental Sciences, The University at Albany – SUNY

DAES Undergraduate Thesis Presentation

2 May 2011

Albany, NY


Overview

MJO Convection

Equatorial Rossby Waves

Extratropical Rossby Waves


Background Information


MJO Circulation

MJO

200-hPa streamfunction (contoured every 10 × 105 m2 s−1), total wind (vectors in m s−1), and MJO-filtered Outgoing Longwave Radiation (OLR) anomaly (shaded < −16 W m−2).

Adapted from Fig. 2b of Kiladis et al. (2005).


MJO Circulation

H

MJO

H

200-hPa streamfunction (contoured every 10 × 105 m2 s−1), total wind (vectors in m s−1), and MJO-filtered Outgoing Longwave Radiation (OLR) anomaly (shaded < −16 W m−2).

Adapted from Fig. 2b of Kiladis et al. (2005).


MJO Circulation

H

L

MJO

L

H

300-hPa streamfunction (contoured every 10 × 105 m2 s−1), total wind (vectors in m s−1), and MJO-filtered Outgoing Longwave Radiation (OLR) anomaly (shaded < −16 W m−2).

Adapted from Fig. 2b of Kiladis et al. (2005).


ER Wave Development

MJO

EQ

300-hPa


ER Wave Development

H

MJO

EQ

H

300-hPa


ER Wave Development

L

H

MJO

EQ

H

L

300-hPa


ER Wave Development

H

L

H

MJO

EQ

H

H

L

300-hPa


ER Wave Development

H

L

H

Background Flow

MJO

EQ

Background Flow

H

H

L

300-hPa


ER Wave Development

H

L

H

L

MJO

EQ

L

H

H

L

300-hPa


ER Wave Development

H

L

H

L

MJO

EQ

L

H

H

L

300-hPa


Data and Methodology

Analyzed satellite-derived OLR data and NCEP—NCAR 40-year reanalysis data pertaining to 300-hPa geopotential height and wind anomalies

Identified set of dates during NH winter (1 Nov–31 Mar) when MJO was located over Maritime Continent

Position over Maritime Continent consistent with RMM Phase 4


Data and Methodology

Identified longitude where ER wave crossing occurred most frequently for RMM Phase 4

Developed set of dates in which ER waves crossed identified longitude


Results: Hovmöllers


MJO Only

RMM Phase 4

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


MJO Only

RMM Phase 4

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


MJO Only

RMM Phase 4

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


ER Wave Only

RMM Phase 4, ER Base Lon 155E

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


ER Wave Only

RMM Phase 4, ER Base Lon 155E

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


ER Wave Only

RMM Phase 4, ER Base Lon 155E

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Sum of MJO and ER Wave

RMM Phase 4, ER Base Lon 155E

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Sum of MJO and ER Wave

RMM Phase 4, ER Base Lon 155E

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Sum of MJO and ER Wave

RMM Phase 4, ER Base Lon 155E

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Sum of MJO and ER Wave

RMM Phase 4, ER Base Lon 155E

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Sum of MJO and ER Wave

RMM Phase 4, ER Base Lon 155E

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Simultaneous MJO and ER Wave

RMM Phase 4, ER Base Lon 155E

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Simultaneous MJO and ER Wave

RMM Phase 4, ER Base Lon 155E

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Simultaneous MJO and ER Wave

RMM Phase 4, ER Base Lon 155E

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Simultaneous MJO and ER Wave

RMM Phase 4, ER Base Lon 155E

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Simultaneous MJO and ER Wave

RMM Phase 4, ER Base Lon 155E

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


MJO Only

RMM Phase 4

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Simultaneous MJO and ER Wave

RMM Phase 4, ER Base Lon 155E

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Significance Test

  • Randomly selected a list of dates associated with RMM phase 4 equal to number of ER wave events counted at identified base point

    • Developed composite MJO with same number of degrees of freedom associated with combined composite

  • Generated composite for random dates and repeated 1,000 times

    • Compared composite result to composite generated by randomly selecting ER wave events during RMM phase 4


Significance Test

  • Determined mean amplitude of random MJO composite is approximately one half mean amplitude of simultaneous composite between 40°N and 50°N

  • Two distributions demonstrated mean amplitude differences significantly larger than zero at 95% confidence level


Results: Composites


MJO Only

OLR, 300-hPa Height and Wind Anomaly, Lag = –5 days, RMM Phase 4

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


MJO Only

OLR, 300-hPa Height and Wind Anomaly, Lag = –4 days, RMM Phase 4

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


MJO Only

OLR, 300-hPa Height and Wind Anomaly, Lag = –3 days, RMM Phase 4

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


MJO Only

OLR, 300-hPa Height and Wind Anomaly, Lag = –2 days, RMM Phase 4

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


MJO Only

OLR, 300-hPa Height and Wind Anomaly, Lag = –1 day, RMM Phase 4

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


MJO Only

OLR, 300-hPa Height and Wind Anomaly, Lag = 0 days, RMM Phase 4

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


MJO Only

OLR, 300-hPa Height and Wind Anomaly, Lag = 1 day, RMM Phase 4

OLR, 300-hPa Height and Wind Anomaly, Lag = 1 days, RMM Phase 4

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


MJO Only

OLR, 300-hPa Height and Wind Anomaly, Lag = 2 days, RMM Phase 4

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


MJO Only

OLR, 300-hPa Height and Wind Anomaly, Lag = 3 days, RMM Phase 4

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


MJO Only

OLR, 300-hPa Height and Wind Anomaly, Lag = 4 days, RMM Phase 4

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


MJO Only

OLR, 300-hPa Height and Wind Anomaly, Lag = 5 days, RMM Phase 4

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


ER Wave Only

OLR, 300-hPa Height and Wind Anomaly, Lag = –5 days, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 1 m s-1)


ER Wave Only

OLR, 300-hPa Height and Wind Anomaly, Lag = –5 days, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 1 m s-1)


ER Wave Only

OLR, 300-hPa Height and Wind Anomaly, Lag = –5 days, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 1 m s-1)


ER Wave Only

OLR, 300-hPa Height and Wind Anomaly, Lag = –4 days, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 1 m s-1)


ER Wave Only

OLR, 300-hPa Height and Wind Anomaly, Lag = –3 days, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 1 m s-1)


ER Wave Only

OLR, 300-hPa Height and Wind Anomaly, Lag = –2 days, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 1 m s-1)


ER Wave Only

OLR, 300-hPa Height and Wind Anomaly, Lag = –1 day, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 1 m s-1)


ER Wave Only

OLR, 300-hPa Height and Wind Anomaly, Lag = 0 days, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 1 m s-1)


ER Wave Only

OLR, 300-hPa Height and Wind Anomaly, Lag = 1 day, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 1 m s-1)


ER Wave Only

OLR, 300-hPa Height and Wind Anomaly, Lag = 2 days, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 1 m s-1)


ER Wave Only

OLR, 300-hPa Height and Wind Anomaly, Lag = 3 days, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 1 m s-1)


ER Wave Only

OLR, 300-hPa Height and Wind Anomaly, Lag = 4 days, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 1 m s-1)


ER Wave Only

OLR, 300-hPa Height and Wind Anomaly, Lag = 5 days, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 1 m s-1)


Simultaneous MJO/ER Wave

OLR, 300-hPa Height and Wind Anomaly, Lag = –5 days, RMM Phase 4, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Simultaneous MJO/ER Wave

OLR, 300-hPa Height and Wind Anomaly, Lag = –4 days, RMM Phase 4, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Simultaneous MJO/ER Wave

OLR, 300-hPa Height and Wind Anomaly, Lag = –3 days, RMM Phase 4, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Simultaneous MJO/ER Wave

OLR, 300-hPa Height and Wind Anomaly, Lag = –2 days, RMM Phase 4, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Simultaneous MJO/ER Wave

OLR, 300-hPa Height and Wind Anomaly, Lag = –1 day, RMM Phase 4, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Simultaneous MJO/ER Wave

OLR, 300-hPa Height and Wind Anomaly, Lag = 0 days, RMM Phase 4, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Simultaneous MJO/ER Wave

OLR, 300-hPa Height and Wind Anomaly, Lag = 1 day, RMM Phase 4, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Simultaneous MJO/ER Wave

OLR, 300-hPa Height and Wind Anomaly, Lag = 2 days, RMM Phase 4, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Simultaneous MJO/ER Wave

OLR, 300-hPa Height and Wind Anomaly, Lag = 3 days, RMM Phase 4, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Simultaneous MJO/ER Wave

OLR, 300-hPa Height and Wind Anomaly, Lag = 4 days, RMM Phase 4, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Simultaneous MJO/ER Wave

OLR, 300-hPa Height and Wind Anomaly, Lag = 5 days, RMM Phase 4, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Summary

MJO Convection

Equatorial Rossby Waves

Extratropical Rossby Waves


The Grand Conclusion

  • Simultaneous assessment of MJO and ER wave events yields more 
information
 about 
extratropical 
circulation
 than
 can 
be 
obtained
 from
 either 
field
 alone, 
or 
from
 simple
 linear 
combination 
of 
two
 fields

  • ER wave state during particular MJO phase might yield better empirical prediction of following global atmospheric circulation


Acknowledgments

  • A special thank you to:

    • Dr. Paul Roundy for lending his time and expertise to helping me develop and analyze my research problem

    • Kyle MacRitchie for allowing me to use several of his MATLAB scripts, and for helping me understand the many facets of MATLAB


Thank you!

  • Lawrence C. Gloeckler

    Department of Atmospheric and Environmental Sciences

    University at Albany – SUNY

    email: [email protected]

    QUESTIONS?


  • Login