Modulation of the Extratropical Circulation by Combined Activity of the Madden–Julian Oscillation ...
This presentation is the property of its rightful owner.
Sponsored Links
1 / 76

Lawrence C. Gloeckler and Dr. Paul E. Roundy PowerPoint PPT Presentation


  • 91 Views
  • Uploaded on
  • Presentation posted in: General

Modulation of the Extratropical Circulation by Combined Activity of the Madden–Julian Oscillation and Equatorial Rossby Waves. Lawrence C. Gloeckler and Dr. Paul E. Roundy Department of Atmospheric and Environmental Sciences, The University at Albany – SUNY

Download Presentation

Lawrence C. Gloeckler and Dr. Paul E. Roundy

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Lawrence c gloeckler and dr paul e roundy

Modulation of the Extratropical Circulation by Combined Activity of the Madden–Julian Oscillation and Equatorial Rossby Waves

Lawrence C. Gloeckler and Dr. Paul E. Roundy

Department of Atmospheric and Environmental Sciences, The University at Albany – SUNY

DAES Undergraduate Thesis Presentation

2 May 2011

Albany, NY


Overview

Overview

MJO Convection

Equatorial Rossby Waves

Extratropical Rossby Waves


Background information

Background Information


Lawrence c gloeckler and dr paul e roundy

MJO Circulation

MJO

200-hPa streamfunction (contoured every 10 × 105 m2 s−1), total wind (vectors in m s−1), and MJO-filtered Outgoing Longwave Radiation (OLR) anomaly (shaded < −16 W m−2).

Adapted from Fig. 2b of Kiladis et al. (2005).


Mjo circulation

MJO Circulation

H

MJO

H

200-hPa streamfunction (contoured every 10 × 105 m2 s−1), total wind (vectors in m s−1), and MJO-filtered Outgoing Longwave Radiation (OLR) anomaly (shaded < −16 W m−2).

Adapted from Fig. 2b of Kiladis et al. (2005).


Mjo circulation1

MJO Circulation

H

L

MJO

L

H

300-hPa streamfunction (contoured every 10 × 105 m2 s−1), total wind (vectors in m s−1), and MJO-filtered Outgoing Longwave Radiation (OLR) anomaly (shaded < −16 W m−2).

Adapted from Fig. 2b of Kiladis et al. (2005).


Er wave development

ER Wave Development

MJO

EQ

300-hPa


Er wave development1

ER Wave Development

H

MJO

EQ

H

300-hPa


Er wave development2

ER Wave Development

L

H

MJO

EQ

H

L

300-hPa


Er wave development3

ER Wave Development

H

L

H

MJO

EQ

H

H

L

300-hPa


Er wave development4

ER Wave Development

H

L

H

Background Flow

MJO

EQ

Background Flow

H

H

L

300-hPa


Er wave development5

ER Wave Development

H

L

H

L

MJO

EQ

L

H

H

L

300-hPa


Er wave development6

ER Wave Development

H

L

H

L

MJO

EQ

L

H

H

L

300-hPa


Data and methodology

Data and Methodology

Analyzed satellite-derived OLR data and NCEP—NCAR 40-year reanalysis data pertaining to 300-hPa geopotential height and wind anomalies

Identified set of dates during NH winter (1 Nov–31 Mar) when MJO was located over Maritime Continent

Position over Maritime Continent consistent with RMM Phase 4


Data and methodology1

Data and Methodology

Identified longitude where ER wave crossing occurred most frequently for RMM Phase 4

Developed set of dates in which ER waves crossed identified longitude


Results hovm llers

Results: Hovmöllers


Mjo only

MJO Only

RMM Phase 4

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Mjo only1

MJO Only

RMM Phase 4

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Mjo only2

MJO Only

RMM Phase 4

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Er wave only

ER Wave Only

RMM Phase 4, ER Base Lon 155E

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Er wave only1

ER Wave Only

RMM Phase 4, ER Base Lon 155E

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Er wave only2

ER Wave Only

RMM Phase 4, ER Base Lon 155E

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Sum of mjo and er wave

Sum of MJO and ER Wave

RMM Phase 4, ER Base Lon 155E

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Sum of mjo and er wave1

Sum of MJO and ER Wave

RMM Phase 4, ER Base Lon 155E

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Sum of mjo and er wave2

Sum of MJO and ER Wave

RMM Phase 4, ER Base Lon 155E

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Sum of mjo and er wave3

Sum of MJO and ER Wave

RMM Phase 4, ER Base Lon 155E

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Sum of mjo and er wave4

Sum of MJO and ER Wave

RMM Phase 4, ER Base Lon 155E

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Simultaneous mjo and er wave

Simultaneous MJO and ER Wave

RMM Phase 4, ER Base Lon 155E

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Simultaneous mjo and er wave1

Simultaneous MJO and ER Wave

RMM Phase 4, ER Base Lon 155E

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Simultaneous mjo and er wave2

Simultaneous MJO and ER Wave

RMM Phase 4, ER Base Lon 155E

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Simultaneous mjo and er wave3

Simultaneous MJO and ER Wave

RMM Phase 4, ER Base Lon 155E

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Simultaneous mjo and er wave4

Simultaneous MJO and ER Wave

RMM Phase 4, ER Base Lon 155E

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Mjo only3

MJO Only

RMM Phase 4

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Simultaneous mjo and er wave5

Simultaneous MJO and ER Wave

RMM Phase 4, ER Base Lon 155E

OLR (shaded between 7.5°S and 7.5°N; W m-2) and 300-hPa geopotential height anomaly (contoured between 40°N and 50°N; red=positive, blue=negative)


Significance test

Significance Test

  • Randomly selected a list of dates associated with RMM phase 4 equal to number of ER wave events counted at identified base point

    • Developed composite MJO with same number of degrees of freedom associated with combined composite

  • Generated composite for random dates and repeated 1,000 times

    • Compared composite result to composite generated by randomly selecting ER wave events during RMM phase 4


Significance test1

Significance Test

  • Determined mean amplitude of random MJO composite is approximately one half mean amplitude of simultaneous composite between 40°N and 50°N

  • Two distributions demonstrated mean amplitude differences significantly larger than zero at 95% confidence level


Results composites

Results: Composites


Mjo only4

MJO Only

OLR, 300-hPa Height and Wind Anomaly, Lag = –5 days, RMM Phase 4

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Mjo only5

MJO Only

OLR, 300-hPa Height and Wind Anomaly, Lag = –4 days, RMM Phase 4

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Mjo only6

MJO Only

OLR, 300-hPa Height and Wind Anomaly, Lag = –3 days, RMM Phase 4

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Mjo only7

MJO Only

OLR, 300-hPa Height and Wind Anomaly, Lag = –2 days, RMM Phase 4

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Mjo only8

MJO Only

OLR, 300-hPa Height and Wind Anomaly, Lag = –1 day, RMM Phase 4

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Mjo only9

MJO Only

OLR, 300-hPa Height and Wind Anomaly, Lag = 0 days, RMM Phase 4

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Mjo only10

MJO Only

OLR, 300-hPa Height and Wind Anomaly, Lag = 1 day, RMM Phase 4

OLR, 300-hPa Height and Wind Anomaly, Lag = 1 days, RMM Phase 4

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Mjo only11

MJO Only

OLR, 300-hPa Height and Wind Anomaly, Lag = 2 days, RMM Phase 4

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Mjo only12

MJO Only

OLR, 300-hPa Height and Wind Anomaly, Lag = 3 days, RMM Phase 4

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Mjo only13

MJO Only

OLR, 300-hPa Height and Wind Anomaly, Lag = 4 days, RMM Phase 4

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Mjo only14

MJO Only

OLR, 300-hPa Height and Wind Anomaly, Lag = 5 days, RMM Phase 4

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Er wave only3

ER Wave Only

OLR, 300-hPa Height and Wind Anomaly, Lag = –5 days, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 1 m s-1)


Er wave only4

ER Wave Only

OLR, 300-hPa Height and Wind Anomaly, Lag = –5 days, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 1 m s-1)


Er wave only5

ER Wave Only

OLR, 300-hPa Height and Wind Anomaly, Lag = –5 days, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 1 m s-1)


Er wave only6

ER Wave Only

OLR, 300-hPa Height and Wind Anomaly, Lag = –4 days, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 1 m s-1)


Er wave only7

ER Wave Only

OLR, 300-hPa Height and Wind Anomaly, Lag = –3 days, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 1 m s-1)


Er wave only8

ER Wave Only

OLR, 300-hPa Height and Wind Anomaly, Lag = –2 days, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 1 m s-1)


Er wave only9

ER Wave Only

OLR, 300-hPa Height and Wind Anomaly, Lag = –1 day, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 1 m s-1)


Er wave only10

ER Wave Only

OLR, 300-hPa Height and Wind Anomaly, Lag = 0 days, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 1 m s-1)


Er wave only11

ER Wave Only

OLR, 300-hPa Height and Wind Anomaly, Lag = 1 day, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 1 m s-1)


Er wave only12

ER Wave Only

OLR, 300-hPa Height and Wind Anomaly, Lag = 2 days, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 1 m s-1)


Er wave only13

ER Wave Only

OLR, 300-hPa Height and Wind Anomaly, Lag = 3 days, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 1 m s-1)


Er wave only14

ER Wave Only

OLR, 300-hPa Height and Wind Anomaly, Lag = 4 days, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 1 m s-1)


Er wave only15

ER Wave Only

OLR, 300-hPa Height and Wind Anomaly, Lag = 5 days, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 1 m s-1)


Simultaneous mjo er wave

Simultaneous MJO/ER Wave

OLR, 300-hPa Height and Wind Anomaly, Lag = –5 days, RMM Phase 4, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Simultaneous mjo er wave1

Simultaneous MJO/ER Wave

OLR, 300-hPa Height and Wind Anomaly, Lag = –4 days, RMM Phase 4, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Simultaneous mjo er wave2

Simultaneous MJO/ER Wave

OLR, 300-hPa Height and Wind Anomaly, Lag = –3 days, RMM Phase 4, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Simultaneous mjo er wave3

Simultaneous MJO/ER Wave

OLR, 300-hPa Height and Wind Anomaly, Lag = –2 days, RMM Phase 4, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Simultaneous mjo er wave4

Simultaneous MJO/ER Wave

OLR, 300-hPa Height and Wind Anomaly, Lag = –1 day, RMM Phase 4, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Simultaneous mjo er wave5

Simultaneous MJO/ER Wave

OLR, 300-hPa Height and Wind Anomaly, Lag = 0 days, RMM Phase 4, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Simultaneous mjo er wave6

Simultaneous MJO/ER Wave

OLR, 300-hPa Height and Wind Anomaly, Lag = 1 day, RMM Phase 4, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Simultaneous mjo er wave7

Simultaneous MJO/ER Wave

OLR, 300-hPa Height and Wind Anomaly, Lag = 2 days, RMM Phase 4, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Simultaneous mjo er wave8

Simultaneous MJO/ER Wave

OLR, 300-hPa Height and Wind Anomaly, Lag = 3 days, RMM Phase 4, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Simultaneous mjo er wave9

Simultaneous MJO/ER Wave

OLR, 300-hPa Height and Wind Anomaly, Lag = 4 days, RMM Phase 4, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Simultaneous mjo er wave10

Simultaneous MJO/ER Wave

OLR, 300-hPa Height and Wind Anomaly, Lag = 5 days, RMM Phase 4, ER Base Lon 155E

Positive 300-hPa height anomaly (20 dam intervals)

Negative 300-hPa height anomaly (20 dam intervals)

u/v wind anomaly (magnitude exceeding ± 2 m s-1)


Summary

Summary

MJO Convection

Equatorial Rossby Waves

Extratropical Rossby Waves


The grand conclusion

The Grand Conclusion

  • Simultaneous assessment of MJO and ER wave events yields more 
information
 about 
extratropical 
circulation
 than
 can 
be 
obtained
 from
 either 
field
 alone, 
or 
from
 simple
 linear 
combination 
of 
two
 fields

  • ER wave state during particular MJO phase might yield better empirical prediction of following global atmospheric circulation


Acknowledgments

Acknowledgments

  • A special thank you to:

    • Dr. Paul Roundy for lending his time and expertise to helping me develop and analyze my research problem

    • Kyle MacRitchie for allowing me to use several of his MATLAB scripts, and for helping me understand the many facets of MATLAB


Thank you

Thank you!

  • Lawrence C. Gloeckler

    Department of Atmospheric and Environmental Sciences

    University at Albany – SUNY

    email: [email protected]

    QUESTIONS?


  • Login