1 / 46

Investigation of the muon-induced background of the EDELWEISS-II experiment

Investigation of the muon-induced background of the EDELWEISS-II experiment. Astrid Chantelauze KIT – Karlsruhe Institute of Technology Université Blaise Pascal. Evidences of dark matter Strategies of detection Direct detection: EDELWEISS-II experiment

basil
Download Presentation

Investigation of the muon-induced background of the EDELWEISS-II experiment

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Investigation of the muon-induced background of the EDELWEISS-II experiment Astrid Chantelauze KIT – Karlsruhe Institute of Technology Université Blaise Pascal 1 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  2. Evidences of dark matter Strategies of detection Direct detection: EDELWEISS-II experiment Investigation of the muon-induced background: Muon veto performances Muon veto – bolometer coincidence analysis Overview 2 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  3. Eppur si muove Hello! Barred Spiral Milky Way Illustration, Credit: NASA/JPL-Caltech/R. Hurt (SSC) Since 6 centuries… 3 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  4. Rotation of spiral galaxiesUsing movement to measure mass Vera Rubin (70s) showed that observation of rotation of disks in their outer parts required a lot of invisible mass … M33, Orange Observatory E. Corbelli & P. Salucci MNRAS, 311, 441 (1999) 4 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  5. Image 1 Object Cluster Image 2 Gravitational lensing ΩM= 1 ΩM= 0.3 Galaxy Cluster Abell 2218 as seen by the observer Observer N. A. Bahcall et al., Astrophysical Journal, 447, L81(1995) 5 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  6. LCDM ΩΛ Ωnon-b Ωb ΩΛ ΩM New order of the universe: Ωtot = ΩΛ + ΩM + Ωk Ωk = 0.01 flat universe G. Hinshaw et al., Astrophysical Journal, 170, 288 (2007) S. Perlmutter, Physics Today, 56, 53 (2003) 6 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  7. LCDM ΩΛ Ωnon-b Ωb ΩΛ ΩM S. Perlmutter, Physics Today, 56, 53 (2003) New order of the universe: Ωtot = ΩΛ + ΩM + Ωk Ωtot = ΩΛ + ΩM + Ωk = 1.011 ± 0.012 7 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  8. 4% 20% as new unknown particles ! 8 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  9. 4 main facts about its nature: non-baryonic weakly interacting essentially stable, or at least have a life time long compared to the present age of the universe cold = read slow-moving. More precisely, a cold dark matter candidate must be non-relativistic throughout the formation of largescale structure Dark Matter particle freeze-out of a weakly interacting massive (WIMP) when reaction rate drops below expansion rate time t (t ~ T-2) increasing <sAv> thermodynamic equilibrium x = mc / T Tfreeze-out~ 1/20· Mc E. W. Kolb & M. S. Turner, The Early Universe, Frontiers in Physics, Vol. 69 (1990) 9 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  10. Dark Matter in a cloud around the milky way WIMP WIMP 200 cm³ Galactic WIMP halo ≈72 Ge • Lightest Supersymmetric Particle (LSP) • mass 50 GeV to ~ 1000 GeV • relative speed 270 km/s (~ our orbital velocity around galactic center) • only a few keV of recoil energy • cross section • local WIMP-density sc < 10-42cm2 rc 0.3 GeV/cm3 (1 per cup) • very very rare scattering events (< 1 / week / kg) in the same cup 60.000 ν 10 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  11. 11 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  12. c 72Ge Dark Matter search Indirect DM search (cc annihilation) cc ff needs astrophysical overdensities: 1. galactic center excess of cosmic rays (g´s & antimatter) 2. the Sun  energetic “solar” neutrinos (ne, nm, nm) 3. the Earth  “upward-going” muons from (nm, nm) Production at Accelerators Heavy strongly-interacting SUSY states (squarks, gluinos) produced copiously in p-p collisions  missing transverse momentum Direct dark matter elastic scattering on a nucleus 1. annual modulation 2. event-by-event discrimination 12 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  13. WIMP Direct DM search – detection schemes …via elastic scattering off nuclei Ge, CF3I, C4F10 Ge, Si Ionization CoGeNT COUPP Picasso Edelweiss, CDMS 10% energy WArP, ArDM Heat Al2O3, LiF liquid Xe/Ar Target 100% energyslowestcryogenics CRESST-1 Zeplin-3 , LUX, Xenon-10/100 Light NaI, liquid.Xe 1% energyfastestno surface effects CaWO4, BGO DAMA, Libra, Zeplin-1, XMASS, KIMS, ANAIS CRESST-2 WIMP 13 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  14. EDELWEISS @ Laboratoire Souterrain de Modane FRANCE ITALIE Altitudes 1228 m 1263 m 1298 m Distances 6210 m 12 868 m 0 m 14 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  15. 300 Heat 200 100 0 0 100 200 300 400 500 t (ms) Ionisation 100 0 0 2 4 6 8 10 t (ms) Germanium bolometers Guard ring NTD sensor m = 320g Center electrode • Simultaneous measurement •  Heat @ 17 mK with Ge/NTD thermometer •  Ionization @ few V/cm with Al electrodes •  Evt by evt identification of the recoil by ratio Q = Eionization / Erecoil • Q = 1 for electronic recoil • Q  0.3 for nuclear recoil 15 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  16. Standard Q-plot calibration of a 320g Ge bolometer with 252Cf 73Ge(n,n’g) 68.8 keV 13.3 keV n/g discrimination > 99.9% for Er >15 keV Recoil threshold 20 keV Ionization threshold 3.7 keV O. Martineau et al., NIM A, 530, 426 (2004) 16 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  17. The Edelweiss experiment One Germanium detector Some layers of detectors The cryostat when it’s closed The shielding of the experiment 17 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  18. EDELWEIS-II muon veto system • 42 modules covering 100 m2 98% coverage • energy, timing µ tracking capability • modular structure • read at both side 18 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  19. Muon veto – Life time position known thanks to user position known via laser meas. “veto closed” “veto open” July 2006 – July 2009: 835.9 live days = 76%; 85% of data “closed” 19 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  20. Muon candidates • Muon candidates: • Internal coincidence within a module • strictly more than one module hit • coincidence of two modules of different levels (module #4 and lower level) m 20 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  21. Muon rate Geant-4 simulation M.Horn, PhD thesis 21 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  22. Through going muons m High multiplicity events → showers • expected time difference (vertical tracks): Dt = 5.2m / 3×108 m/s ≈ 17 ns • obtained from the fit: Dt ≈ 19 ± 2 ns →Δl = 5.7 ± 0.6 → non vertical • but still “downward going muons” 22 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  23. Coincidence analysis Muon track Ionization / Heat removed ! Heat Region of interest for WIMP signals Heat 23 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  24. Coincidence analysis with Run 8 24 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  25. Run 8 – Distribution of the time as viewed in the muon veto Time restarts with each run… … perfectly continuous during a run Connect correct veto period to run of s2 + same uncorrelated structure for other comput. → reconstrution of continuous a time line for all sub-systems 25 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  26. Run 8 – Bolometer event building ∆tbolo > 500 ms 26 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  27. Muon veto-bolometers coincidences ∆tbolo > 500 ms > 1 veto module hit Define an interval at tveto - tbolo = +25 ± 10 ms 27 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  28. ∆tbolo > 500 ms Run 8 – Systematics of the muon veto-bolometers coincidence interval > 1 veto module hit Time interval Low energy High energy Total excess coincidence interval for Run 8 tveto - tbolo in [+15, +35] ms 28 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  29. Erecoil < 250 keV Erecoil ≥ 250 keV measured events 16 28 expected accidentals 3.7 ± 0.2 2.9 ± 0.2 excess coincidences 12.3 ± 4.2 25.1 ± 5.5 signal/background 3.3 ± 1.4 8.7 ± 2.4 ∆tbolo > 500 ms Run 8 – Coincidences at ER < 250 keV > 1 veto module hit 4 events at low Er, low Q: (Er = 19 keV, Q = 0.26) (Er = 23 keV, Q = 0.17) (Er = 26 keV, Q = 0.23) (Er = 36 keV, Q = 0.31) Erecoil < 250 keV Muon-induced event rate: 0.04 events/kg.d 29 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  30. Run 8 – Comparison with the simulation • 16 bolometers non compact • 15 keV < Edep < 250 keV • Single bolometer events Erecoil < 250 keV Measured: 0.04 events/kg.d Expected from Geant4 simulation: ~ 0.03 events/kg.d Geant-4 simulation M.Horn, PhD thesis hits/crystal (1/keV/day) • Compact geometry 120 bolometers • 1 keV < Edep < 250 keV • Multi hits 30 Energy deposit in bolometers/hit (keV) 30 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  31. ∆tbolo > 500 ms Run 8 – Coincidences at ER ≥ 250 keV > 1 veto module hit Erecoil ≥ 250 keV coincidences with ● multi(bolo) = 1 ■ multi(bolo) > 1 and if multi(bolo) > 1 ∆ individual bolometer 3 events at low Er, low Q: (Er = 16 keV, Q = 0.22) (Er = 34.9 keV, Q = 0.47) (Er = 35 keV, Q = 0.33) Erecoil ≥ 250 keV Muon-induced event rate: 0.1 events/kg.d 31 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  32. 32 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  33. Run 8 Run 10 33 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  34. Characteristics of Run 8 and Run 10 34 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  35. New time stamp from the OPERA box as viewed in the muon veto almost perfect Removing time mismatches: 10-3 jumps 35 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  36. Characteristics of Run 8 and Run 10 36 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  37. Run 10 - Events in the ntp file: Biplot heat vs ionization s1 Events which pass the adaptative threshold Events which pass the adaptative threshold Events which have ΣEH > 30 keV and ΣEI > 30 keV 37 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  38. Characteristics of Run 8 and Run 10 0.0107 Hz 38 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  39. Run 10 – Bolometer event building Events with ΣEH > 30 keV and ΣEI > 30 keV ∆tbolo > 500 ms 39 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  40. Run 10 – Muon veto-bolometers coincidences Events with ΣEH > 30 keV and ΣEI > 30 keV ∆tbolo > 500 ms > 1 veto module hit Define an interval at tveto - tbolo = -5 ± 5 ms 40 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  41. Run 10 – Evaluation of the muon veto-bolometer coincidence interval Time interval Low energy High energy Total excess coincidence interval for Run 10 tveto - tbolo in [-15, +5] ms Events with ΣEH > 30 keV and ΣEI > 30 keV ∆tbolo > 500 ms > 1 veto module hit 41 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  42. Run 10 – Coincidences at EH < 250 keV Events with ΣEH > 30 keV and ΣEI > 30 keV ∆tbolo > 500 ms > 1 veto module hit Signal / Background = 2.4 Quality of coincident events Erecoil < 250 keV 0 events at low EH, low Q ! Muon-induced event rate: 0.023 events/kg.d 42 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  43. Run 10 – Coincidences at EH ≥ 250 keV Events with ΣEH > 30 keV and ΣEI > 30 keV ∆tbolo > 500 ms > 1 veto module hit EHeat ≥ 250 keV coincidences with ● multi(bolo) = 1 ■ multi(bolo) > 1 and if multi(bolo) > 1 ∆ individual bolometer EHeat ≥ 250 keV 1 event at low EH, low Q: (EH = 294,2 keV, Q = 0.41) in coincidence with (EH = 151.1 keV, Q = 1.08) Muon-induced event rate: 0.1 events/kg.d Signal / Background = 9.1 43 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  44. Muon veto allows to access the muon event topology (tracking in time and energy) and the muon flux Firstcombined analysis of both muon veto and bolometers Identification of muon-induced events: ER< 50 keV …………. dominated by neutrons 50 < ER < 250 keV …. electron like single hits ER > 250 keV ……….. multi-bolometer events with single low-Q hits Muon-induced events at ER<250 keV, for the EDW-II experiment: G = 0.04 events/kg.d New EDW bolometer (ID) – e/gbackground free EURECA: joint effort of CRESST and EDW – 1 ton scale Non vetoed µ-induced bg would be the limiting background Summary 44 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  45. Investigation of the muon induced background of the EDELWEISS-II experiment Astrid Chantelauze KIT – Karlsruhe Institute of Technology Université Blaise Pascal 45 | Astrid Chantelauze | PhD defense | Université Blaise Pascal | 04/11/09

  46. 25 ms 46 | Astrid Chantelauze | IK-Institutsseminar | KIT | 17/11/09

More Related