1 / 35

Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

Molecular Catenation via Metal-Directed Self-Assembly andπ-Donor/π-Acceptor Interactions: Efficient One-Pot Synthesis, Characterization, and Crystal Structures of [3]Catenanes Based on Pd or Pt Dinuclear Metallocycles. Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and

barney
Download Presentation

Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela*

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Molecular Catenation via Metal-Directed Self-Assembly andπ-Donor/π-Acceptor Interactions: Efficient One-Pot Synthesis, Characterization, and Crystal Structures of [3]Catenanes Based on Pd or Pt Dinuclear Metallocycles Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela* J. Am. Chem. Soc. 2007, 129, 13978-13986 Speaker: 黃仁鴻

  2. Synthesis of [n]Catenanes • π-Donor/π-Acceptor complexes • Hydrogen bond interactions • Anion templation • Metal complexation

  3. A Chemically-Switchable [2]Catenane c a b Figure 1. The [2]catenane 14+ and the translational isomers (2A4+ and 2B4+) of the [2]catenane 24+. Balzani, V.; Credi, A.; Langford, S. J.; Raymo, F. M.; Stoddart, J. F.;Venturi, M. J. Am. Chem. Soc. 2000, 122, 3542.

  4. Amide-Based Interlocked Compounds Leigh, D. A.; Venturini, A.; Wilson, A. J.; Wong, J. K. Y.; Zerbetto, F. Chem.-Eur. J. 2004, 10, 4960.

  5. Anion-Templated Assembly of a [2]Catenane Figure 2. Strategy for assembly of [2]-catenanes via anion templation. Sambrook, M.; Wisner, J. A.; Paul, R. L.; Cowley, A. R.; Szemes, F.; Beer,P. D. J. Am. Chem. Soc. 2004, 126, 15364.

  6. Catenanes Built Around Octahedral Transition Metals Figure 3. Synthesis of a catenane using an octahedral metal atom and three bidentate chelates: construction principle. Chambron, J.-C.; Collin, J.-P.; Heitz, V.;Jouvenot, D.; Kern, J.-M.; Mobian, P.; Pomeranc, D.; Sauvage, J.-P. Eur. J. Org. Chem. 2004, 1627.

  7. Synthesis of [n]Catenanes • π-Donor/π-Acceptor complexes • Hydrogen bond interactions • Anion templation • Metal complexation

  8. Structures of Molecular Components Used in This Work

  9. Dinuclear molecular squares 3a,b • Pseudorotaxanes • [3]-Catenanes (BPP34C10)2-(3a,b) • [3]-Catenanes (DB24C8)2-(3a,b) • [3]-Catenanes (DN38C10)2-(3a,b)

  10. Synthesis of Dinuclear Molecular Squares 3a,b

  11. 1H NMR Spectrum of 3a·4OTf·4PF6 a 8.99 ppm a 8H 8H 4H 8H 8H 8H 8H 8.91 ppm △

  12. g f e d c b a i h 13C NMR Spectrum of 3a·4OTf·4PF6 DEPT-135 CH CH CH CH CH2 CH2 C C

  13. g f e d c b a i h HSQC Spectrum of 3a·4OTf·4PF6 13C NMR Heteronuclear Single Quantum Coherence 1H-13C 1J h i 1H NMR a a

  14. g f h e d c b a i i h g b i h g a COSY Spectrum of 3a·4OTf·4PF6 1H NMR COrrelation SpectroscopY 1H-1H 3J 1H NMR e f a b

  15. g f g e d c b a i h a c a f HMBC Spectrum of 3a·4OTf·4PF6 13C NMR Heteronuclear Multiple Bond Coherence 1H-13C 1J, 2J, 3J 1H NMR b

  16. g f e d c b a i h 1H & 13C NMR Spectra of 3a·4OTf·4PF6 a b e f g i h a b c Δδ=3.1 ppm Δδ=1.6 ppm 126.2 ppm 154.0 ppm e b a f Δδ=3.5 ppm h 144.9 ppm d c g

  17. 1H NMR Spectra of 1·2PF6 and 2aat Different Concentrations 10 mM 5 mM 2.5 mM 0.5 mM 1·2PF6

  18. Dinuclear molecular squares 3a,b • Pseudorotaxanes • [3]-Catenanes (BPP34C10)2-(3a,b) • [3]-Catenanes (DB24C8)2-(3a,b) • [3]-Catenanes (DN38C10)2-(3a,b)

  19. Rotaxane http://www.catenane.net/home/rotcatintro.html http://en.wikipedia.org/wiki/Rotaxane

  20. Crystal Structure of Pseudorotaxane Complex between 1·2PF6 and DB24C8 [H…O] distances [C-H…O] angle a 2.52 Å 149° b 2.26 Å 167° c 2.21 Å 167° d 2.37 Å 168°

  21. 1H NMR Spectrum of DB24C8-1·2PF6 Pseudorotaxane g f Δδ=0.30 ppm Δδ=0.40 ppm

  22. Dinuclear molecular squares 3a,b • Pseudorotaxanes • [3]-Catenanes (BPP34C10)2-(3a,b) • [3]-Catenanes (DB24C8)2-(3a,b) • [3]-Catenanes (DN38C10)2-(3a,b)

  23. 3.83 Å Crystal Structure of The [3]Catenane (BPP3410)2-(3a)

  24. Partial 1H NMR Spectra of Metallocycle 3a and (BPP34C10)2-(3a) a b Δδ= -0.7ppm e f Δδ= -0.3ppm Δδ= -0.7ppm Δδ= -0.1ppm Figure 2. Partial 1H NMR (CD3CN, 500 MHz) spectra of metallocycle 3a (top) and (BPP34C10)2-(3a) at 237 K (bottom).

  25. Electrospray Ionization MassSpectrometry 987.0 Isotope% H1(100.0%) C12(98.9%) 13(1.1%) N14(99.6%) 15(0.4%) O16(99.8%) 18(0.2%) F 19(100.0%) P31(100.0%) Pt 192(0.8%) 194(32.9%) 195(33.8%) 196(25.3%) 198 (7.2%) 987.0 [(BPP34C10)2-(3b) - 3PF6]+3 Figure 4. Observed (top) and theoretical (bottom) isotopic distribution forthe fragment [(BPP34C10)2-(3b) - 3PF6]+3.

  26. Dinuclear molecular squares 3a,b • Pseudorotaxanes • [3]-Catenanes (BPP34C10)2-(3a,b) • [3]-Catenanes (DB24C8)2-(3a,b) • [3]-Catenanes (DN38C10)2-(3a,b)

  27. 1H NMR Spectra of (DB24C8)2-(3a) Figure 5. Partial 1H NMR (CD3CN, 298 K) spectra of (a) metallocycle 3a (5 mM), (b) 3a (5 mM) + DB24C8 (10 mM), and (c) 3a (5 mM) + DB24C8(20 mM).

  28. Crystal Structure of [3]Catenane (DB24C8)2-(3a)

  29. Reversible Catenation of (DB24C8)2-(3a) Figure 6. 1H NMR (CD3CN, 300 MHz, 298 K) spectra of (a) metallocycle 3a (5 mM), (b) solution (a) + DB24C8 (20 mM), (c) solution (b) + KPF6 (20 mM), (d) solution (c) + 18C6 (20 mM).

  30. Dinuclear molecular squares 3a,b • Pseudorotaxanes • [3]-Catenanes (BPP34C10)2-(3a,b) • [3]-Catenanes (DB24C8)2-(3a,b) • [3]-Catenanes (DN38C10)2-(3a,b)

  31. Crystal Structure of (DN38C10)2-(3a)

  32. Crystal Structure of (DN38C10)2-(3b)

  33. Conclusions • Ligand 1‧2PF6 threads through the cavity of DB24C8 to generate a [2]pseudorotaxane that is stabilized principally by hydrogen-bonding interactions. • The solid-state structure of catenane (DB24C8)2-(3a) revealed that the Pd(en) corners of metallocycle are capped with two additional polyether cyclophanes to form a supramolecular complex composed of eight components. • The catenation process of (DB24C8)2-(3a) can be switched off and on in a controllable manner by successive addition of KPF6 and 18-crown-6.

  34. Conclusions(continued) • The reported catenanes are composed of a dinuclear molecular square bridged by ligand 1‧2PF6 interpenetrated by two polyether macrorings. • X-ray crystallography in combination with NMR studies showed that π-πstacking and [C-H…π] interactions in addition to [C-H…O]hydrogen bonds are the noncovalent forces that stabilize the [3]catenanes.

  35. Thanks for Your Attention!!

More Related