1 / 28

DNA Structure and Replication

DNA Structure and Replication. Pollard & Earnshaw Ch 12-14, 40-42 Structure Chemical composition Filament packing Chromosome organization Replication Origin of replication complex Licensing MCM/polymerase. C. O. Base. OPO 3. C. C. OH. O. C. C. C. OH. C. C. C. OH. OH. OH.

badu
Download Presentation

DNA Structure and Replication

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DNA Structure and Replication • Pollard & Earnshaw Ch 12-14, 40-42 • Structure • Chemical composition • Filament packing • Chromosome organization • Replication • Origin of replication complex • Licensing • MCM/polymerase

  2. C O Base OPO3 C C OH O C C C OH C C C OH OH OH C OH Sugar backbone • Pentose sugar (deoxyribose) • 5’ Phosphate • Nitrogen rich base deoxyribonucleotide Adenosine Ribose

  3. Pyrimidine • Single nitrogen rich ring • Planar bases due to N and O double bonding Thymidine Cytidine

  4. Purine • Double N-rich ring • Also planar • Base pair are asymmetric Guanosine Adenosine

  5. Base Pairing • Hydrogen bonds define pairing T G C A

  6. G-band ideogram karyotype of human chromosomes shows distinct bands Macromolecular conformation • Sequence effects • Accessory proteins • Chromatin • Chromosome • Covalent modification • Specialized domains • Telomere • Centromere

  7. Chromatin: Nucleosome • Histone octamer • Positively charged, attract negative phosphates • Subject to extensive modification • DNA • 166 BP • Twice wrapped

  8. 30 nm fiber • Bead-on-string 10 nm fiber • 166 BP nucleosome • 34 BP linker DNA • Histone H1 • Condenses to 30 nm fiber • 11nm helix • 6 nucleosomes per turn • H4 (deacetylated) Dorigo et al., 2004

  9. Heterochromatin • Transcriptionally inert • Highly condensed • Gene inactivation • Barr body • CG methylation

  10. Further condensation • 100-300 nm fiber • Domain loop model • 50-100 kb • Scaffold/Matrix Association Region • AT rich • Base unpairing region • Nuclear Matrix • DNA topoisomerase: DNA knots • Condensin: supercoiling

  11. Centromere • Chromatid pairing • Kinetochore • CEN sequence • AT and AG Satellites • Epigenetic modification • Unidentified in mammals • CENP proteins

  12. Telomere • Special structure to differentiate from strand break • 600-2500x 5’-CCCTAA-[…]-TTAGGG-3’ • 200 unpaired base overhang • Prevent chromosomal erosion • Telomerase elongates 3’ DNA • Built-in RNA primer • Active in intestines, testis, cancers • Replicative senescence

  13. Telomere structure • Telomere Repeat Factors (TRF) • Ku capping protein (yeast) • Strand repair function • Loop formation • Mammalian • Physical distribution

  14. Generic scheme of template-mediated synthesis • Identify the start site • Assemble the synthetic machinery • Wait for an initiation trigger • Synthesize • Stop/clean-up

  15. Isolation of DNA polymerase • Arthur Kornberg, 1959 Nobel Prize • Work in 1956-1958 with Maurice Bessman, Ernest Simms, I.R. Lehman and Julius Adler • “Vital” processes vs chemical processes • Eduard Buchner, 1907 • Cell-free synthesis of DNA • DNA + cell extract  dinucleotides • NTP + DNA + cell extract  dinuc +NTP

  16. Cell free synthesis of DNA • Highly optimized system • E coli (doubling time 20 minutes) • Massively radioactive NTP • Very short incubation • Assay conversion of acid-soluble NTP to acid-insoluble DNA • NTP + DNA + cell extract 0.0005% DNA

  17. Cellular fractionation • Start with 60L E coli culture 500 g cells • Lyse and extract 40 g protein • Synthesizes 1 nmole DNA/30 min/mg • Mass/density separation • Size separation • Streptomycin precipitation • Precipitates DNA • Extract 2.5% protein • Synthesizes 43 nmole DNA/30 min/mg

  18. Cellular fractionation • DNAse digest • Solubilize DNA-bound protein • 65% protein remains soluble (1.6% of total) • Synthesizes 67 nmole • Alumina gel precipitation • Protein polarity, ala chromatography • Collect 25% of DNAse fraction (0.4% total) • Synthesizes 200 nmole/30 min/mg • Two further fractionations • Around 0.02% starting protein • 2000 nmole/30 min/mg (~20% total activity)

  19. Enzymatic properties • Synthesizes DNA from diverse templates • Bacterial, plant, mammal • DNA is fundamentally identical • Product has same dinucleotide composition • DNA is a template, not a primer • Faster on denatured DNA • ie: single stranded • Further validated Watson & Crick “template” • Requires long strand template • Works much better on phage than genomic

  20. Base OPO3 C O O Base OPO PO3 PO3 C C C O O C C C C C C OH OH DNA Synthesis • DNA polymerase • Deoxyribose 3’ hydroxyl “attacks” nucleoside triphosphate • Forms phosphodiester bond • Leaves HP2O73- • Never backwards • Okazaki fragments

  21. DNA Polymerase Template strand enters polymerase dsDNA exits Pocket for NTP entry http://www.ncbi.nlm.nih.gov/Structure/mmdb/mmdbsrv.cgi?uid=69181

  22. DNA Replication • Origin of Replication Complex (ORC) anneals to origin • ORC recruits Mini Chromosomal Maintenance (MCM) • MCM recruits Cdc45p • Cdc45p recruits DNA polymerase a/primase complex • Replication Factor C (RFC) displaces pola • RFC recruits Proliferating Cell Nuclear Antigen (PCNA) • PCNA recruits pold • DNA ligase stitches DNA fragments together

  23. Origin of Replication • Prokaryotes • Single, circular DNA ~4,000,000 bp • Replicator/Autonomously Replicating Sequence • Identification by restriction fragment selection Moore, et al.. Construction of chimeric phages and plasmids containing the origin of replication of bacteriophage lambda. Science (1977) 198:1041-6. • DNA synthesis 1000 bp/s or 65 min replication • Simple Eukaryotes (S cerevisiae) • 16 chromosomes, 107 bp genome • Replicase 1000 bp/min or 10 hour !? replication • ARS • ~400 • 150 bp consensus sequence

  24. Origin of Replication • Multi-cellular Eukaryotes • 2-D electrophoretic fractionation (fig 42-14) • Initiation Zone • Epigenetic mechanisms • Proteins and mechanisms are highly conserved • Kornberg’s templates had to be long in order to include an ORI

  25. Pre-replication complex • Origin Recognition Complex • Assembles at origins during G1 • Orthologous to E Coli DnaA • Cell Division Control 6+Cdt1 • Inhibitory complex • E Coli DnaC • Mini-Chromosomal Maintenance proteins • Recruited by Cdc6+Cdt1 • Licensing agent • E Coli DnaB Sun & al NSMB 2013

  26. Transition to Replication • Cdc45p anneals to ORC & Mcm • Recruit GINS (Sld5, Psf1, Psf2, and Psf3) • Activates Mcm helicase • Recruits DNA polymerases and RPA • RPA ssDNA binding protein Leading strand Laggingstrand Simon & al Nature (2014)

  27. Synthesis • Polymerase a/Primase • Polymerase d & e • Proofreading • DNA polymerase error rate ~1:104-105 • Human genome is 3 109 bases ~10,000 errors per mitosis. • Proliferating Cell Nuclear Antigen (PCNA) error correction 1:109 bases, 3 errors per mitosis • 1013 cells or 43 divisions => 130 base errors per adult genome • Okazaki fragment • Topoisomerase

  28. Summary Cdc6 is believed to remain associated with MCMs Fig 42-11

More Related