1 / 31

Catalytic Asymmetric Electrocyclizations : Early Investigations in an Emerging Field

Catalytic Asymmetric Electrocyclizations : Early Investigations in an Emerging Field. R. David Grigg Schomaker Group Organic Student Seminar University of Wisconsin-Madison October 14, 2010. Background. Electrocyclic reactions Stereospecific cyclization

ayita
Download Presentation

Catalytic Asymmetric Electrocyclizations : Early Investigations in an Emerging Field

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Catalytic Asymmetric Electrocyclizations: Early Investigations in an Emerging Field R. David Grigg Schomaker Group Organic Student Seminar University of Wisconsin-Madison October 14, 2010

  2. Background Woodward, R.B. and Hoffmann, R. The Conservation of Orbital Symmetry. Verlag Chemie, Weinheim, 1970. • Electrocyclic reactions • Stereospecific cyclization • Several drawbacks limit practical use of these reactions

  3. A Powerful Synthetic Tool Nicolaou, K.C.; Petasis, N.A.; Zipkin, R.E. J. Am. Chem. Soc. 1982, 104, 5560-5562. • Biomimetic syntheses of endiandric acids • 8π-6π cascades • Natural products isolated as racemates

  4. Asymmetric Electrocyclization In Nature Korman, T.P.; Hill, J.A.; Vu, T.N.; Tsai, S. Biochemistry2004, 43, 14529-14538. Miller, A.K.; Trauner, D. Angew. Chem. Int. Ed. 2005, 44, 4602-4606. Díaz-Marrero, A.R.; Cueto, M.; D’Croz, L.; Darias, J. Org. Lett.2008, 10, 3057-3060. • Enzyme provides chiral environment for cyclization

  5. Nazarov Cyclization Nazarov, I.N.; Zaretskaya, I.I. Bull. Acad. Sci. U.R.S.S., Classe sci. chim. 1942, 200-209. Frontier, A.J.; Collison, C. Tetrahedron2005, 61, 7577-7606. • Earliest catalytic asymmetric examples with Nazarovcyclization • 4πelectrocyclization: controtatory

  6. Substrate-Controlled Torquoselectivity Frontier, A.J.; Collison, C. Tetrahedron2005, 61, 7577-7606 Denmark, S.E.; Wallace, M.A.; Walker, C.B. J. Org. Chem. 1990, 55, 5543-5545 • Favoring direction of orbital rotation (torquoselectivity) • Torquoselectivity can be controlled by a stereocenter

  7. Lewis Acid-Mediated Asymmetric Nazarov Evans, D.A.; Rovis, T.; Kozlowski, M.C.; Downey, C.W.; Tedrow, J.S. J. Am. Chem. Soc. 2000, 122, 9134-9142. Aggarwal, V.K.; Belfield, A.J. Org. Lett. 2003, 5, 5075-5078. • Chiral ligand (bisoxazoline) on Lewis acid could control torquoselectivity

  8. Lewis Acid-Mediated Asymmetric Nazarov Aggarwal, V.K.; Belfield, A.J. Org. Lett. 2003, 5, 5075-5078. Evans, D.A.; Burgey, C.S.; Kozlowski, M.C.; Tregay, S.W. J. Am. Chem. Soc.1999, 121, 686-699. • Bulky substituents critical to achieving high enantioselectivity

  9. Cu-tris(oxazoline) Catalyst He, W.; Sun, X.; Frontier, A. J. Am. Chem. Soc. 2003, 125, 14278-14279. Hargaden, G.C.; Guiry, P.J. Chem. Rev. 2009, 109, 2505-2550. Cao, P.; Deng, C.; Zhou, Y.; Sun, X.; Zheng, J.; Xie, A.; Tang, Y. Angew. Chem. Int. Ed. 2010, 49, 4463-4466. • Polarized divinylketonescyclize with poor enantioselectivity using Cu(II)-PyBOX Lewis acids • Desired less planar chiral ligand • tris-oxazolinePendant group on box ligand Pendant Group

  10. Catalyst Design and Scope Cao, P.; Deng, C.; Zhou, Y.; Sun, X.; Zheng, J.; Xie, Z.; Tang, Y. Angew. Chem. Int. Ed. 2010, 49, 4463-4466. • Only minor improvement in selectivity with pendant group • 10 mol% catalyst loading: Ionizing additive improved turnover R = Ph for Catalyst Screening

  11. Stereochemical Model Cao, P.; Deng, C.; Zhou, Y.; Sun, X.; Zheng, J.; Xie, Z.; Tang, Y. Angew. Chem. Int. Ed. 2010, 49, 4463-4466. He, W.; Sun, X.; Frontier, A. J. Am. Chem. Soc. 2008, 130, 1003-1011. ? • Double-bond isomerization prior to cyclization • Steric effect identified for disfavored rotation (3.94 kJ mol-1) • Role of sidearm not defined

  12. Enantioselective Protonation in the Nazarov Mohr, J.T.; Hong, A.Y.; Stoltz, B.M. Nature Chem.2009, 359-369. Liang, G.; Gradl, S.N.; Trauner, D. Org. Lett.2003, 5, 4931-4934. • Cyclization of 2-alkoxy divinylketone with Sc-PyBOX catalyst • Other substrates produced mixtures with low enantioselectivities • Suspected poor control of torquoselectivity • Protonation of enolate proposed to occur asymmetrically

  13. Enantioselective Protonation in the Nazarov Liang, G. and Trauner, D. J. Am. Chem. Soc.2004, 126, 9544-9545. Evans, D.A.; Masse, C.E.; Wu, J. Org. Lett. 2002, 4, 3375-3378. • Simplified system improved enantioselectivity • Direction of conrotatoryelectrocyclization did not affect stereochemical outcome

  14. Summary:Lewis Acid-Promoted NazarovCyclizations • Demonstrated viability of the transformation • Control of torquoselectivity achieved • Viable alternative: enantioselectiveprotonation • High catalyst loadings common

  15. Brønsted Acid-Promoted Nazarov Cyclizations Terada, M. Synthesis 2010, 1929-1982. Rueping, M.; Ieawsuwan, W.; Antonchick, A.P.; Nachtsheim, B.J. Angew. Chem.Int. Ed.2007, 46, 2097-2100. • Precedent:Enantioselective transformations of imines with chiralBrønsted acids • Carbonyl activation could allow asymmetric Nazarovcyclization • Control of torquoselectivity or enantioselectiveprotonation

  16. First EnantioselectiveOrganocatalyticElectrocyclization Rueping, M.; Ieawsuwan, W.; Antonchick, A.P.; Nachtsheim, B.J. Angew. Chem.Int. Ed.2007, 46, 2097-2100. • Chiral BINOL phosphates • N-triflyl phosphoramide improved reactivity • Low diastereoselectivity

  17. Organocatalytic Enantioselective Protonation Rueping, M.; Ieawsuwan, W. Adv. Synth. Catal. 2009, 351, 78-84. • Octahydro-BINOL derivative improved selectivity for asymmetric enolateprotonation • No stereochemical model for either system

  18. Bifunctional Organocatalyst Approach Bow, W.F.; Basak, A.K.; Jolit, A.; Vicic, D.A.; Tius, M.A. Org. Lett.2010, 12, 440-443. Basak, A.K.; Shimada, N.; Bow, W.F.; Vicic, D.A.; Tius. M.A. J. Am. Chem. Soc.2010, 132, 8266-8267. Shimada, N.; Ashburn, B.O.; Basak, A.K.; Bow, W.F.; Vicic, D.A.; Tius, M.A Chem. Commun.2010, 46, 3774-3775. • Asymmetric Nazarov for α-ketoenones • Well-designed for interaction with a bifunctionalorganocatalyst

  19. Thiourea Catalysts for Asymmetric Nazarov Basak, A.K.; Shimada, N.; Bow, W.F.; Vicic, D.A.; Tius, M.A. J. Am. Chem. Soc.2010, 132, 8266-8267. • Bifunctional nature of catalyst crucial to enantioselectivity • Product could inhibit turnover • No well-defined stereochemical model

  20. Summary:Organocatalytic Asymmetric Nazarov • Organocatalytic methods compare well to techniques utilizing Lewis acidic metals • Alternative approaches have achieved lower catalyst loadings • Attempts made to broaden substrate scope • Mechanisms of stereoinduction not well-understood at present

  21. 6πElectrocyclizations: Beginnings Guner, V.A.; Houk, K.N.; Davies, I.W. J. Org. Chem.2004, 69, 8024. Bishop, L.M.; Barbarow, J.E.; Bergman, R.G.; Trauner, D. Angew. Chem. Int. Ed. 2008, 47, 8100-8103 • Rate of thermal 6πelectrocyclizations strongly dependant upon substrate electronics • Lewis acid interaction with EWG could catalyze the reaction • DFT calculations identified significant activation barrier lowering for ester at position 2

  22. Catalytic Carba – 6πElectrocyclization Bishop, L.M.; Barbarow, J.E.; Bergman, R.G.; Trauner, D. Angew. Chem. Int. Ed. 2008, 47, 8100-8103. Bishop, L.M.; Roberson, R.E.; Bergman, R.G.; Trauner, D. Synthesis2010, 2233-2244. • t1/2 = 4 h at 50 °C without Me2AlCl • t1/2 = 21 min at 50 °C with 1 equiv Me2AlCl Uncatalyzed 1 equiv LA 0.43 equiv LA • Cyclization& stereocontrol feasible with Sc(III) & Cu(II) Lewis acids

  23. 6 π Electrocyclization: Indoline Synthesis Speckamp, W.N.; Veenstra, S.J.; Dijkink, J.; Fortgens, R. J. Am. Chem. Soc.1981, 103, 4643-4645. Maciver, E.E.; Thompson, S.; Smith, M.D. Angew. Chem. Int. Ed. 2009, 48, 9979-9982. • 2-aza-pentadienyl anions found to be excellent substrates for facile electrocyclization • Asymmetric phase transfer catalysis proposed as a route to asymmetric indoline synthesis

  24. Cyclization via Phase-Transfer Catalysis Maciver, E.E.; Thompson, S.; Smith, M.D. Angew. Chem. Int. Ed. 2009, 48, 9979-9982.

  25. Electrocyclization or Mannich? Maciver, E.E.; Thompson, S.; Smith, M.D. Angew. Chem. Int. Ed. 2009, 48, 9979-9982. Corey, E.J.; Xu, F.; Noe, M.C. J. Am. Chem. Soc. 1997, 119, 12414-12415. • Possibility for an intramolecularMannich-type reaction • No cyclization with a substrate that could control enolate geometry

  26. Chiral Brønsted Acid Catalysis: 6π Huisgen, R. Angew. Chem. Int. Ed. 1980, 92, 979. Müller, S.; List, B. Angew. Chem. Int. Ed.2009, 48, 9975-9978. • α,β-unsaturated hydrazone rearrangement to give 2-pyrazoline is isoelectronic to a pentadienyl anion 6πelectrocyclization • Acid-promoted: might occur asymmetrically with chiralBrønsted acid

  27. 2-Pyrazoline Synthesis via Electrocyclization Müller, S.; List, B. Angew. Chem. Int. Ed.2009, 48, 9975-9978. • Chiral phosphoric acids found to give optically active products with good yield and enantioselectivity • Could form hydrazone intermediate in situ

  28. Mechanistic Questions Müller, S.; List, B. Synthesis2010, 2171-2179. • Two mechanistic scenarios • Intramolecular Michael addition would be a disfavored 5-endo-trig • Stereochemical model not proposed at present

  29. 6πElectrocyclization Summary • High activation barrier limits scope to substrates with compatible electronics, though encouraging results have been obtained • Methods have worked well for heterocycle formation • Approaches include phase-transfer catalysis & chiralBrønsted acid catalysis • Mild conditions • Exact cyclization mechanisms not well understood

  30. Conclusions & Future Directions • Catalytic asymmetric electrocyclizations have the potential for becoming key synthetic transformations • Enantioselective reactions can be approached with Lewis acidic metals and organocatalysts • Selectivity can be accomplished by control of torquoselectivity and through enantioselectiveprotonation • Future efforts will seek to cyclize more diverse polyene structures in both the Nazarov reaction and 6π systems • Improving understanding of stereoinduction mechanism will be a key goal in future efforts

  31. Acknowledgements • Jennifer Schomaker • Kat Myhre • Practice Talk attendees • Alex Clemens • James Gerken • Jonathan Hudon • Michael Ischay • Liz Tyson • Dan Wherritt • Kevin Williamson • Gene Wong Schomaker Group Members • Luke Boralsky • Rachel Dao • Ally Esch • John Hershberger • Dagmara Marston • Alan Meis • Simon Pearce • Jared Rigoli • VitaliyTimokhin

More Related