1 / 15

Research Challenges in Wireless Networks of Biomedical Sensors 1

Research Challenges in Wireless Networks of Biomedical Sensors 1. Loren Schwiebert Wayne State University Department of Computer Science. Sandeep K. S. Gupta Arizona State University Department of Computer Science and Engineering. Jennifer Weinmann Wayne State University

aurek
Download Presentation

Research Challenges in Wireless Networks of Biomedical Sensors 1

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Research Challenges in Wireless Networks of Biomedical Sensors1 Loren Schwiebert Wayne State University Department of Computer Science Sandeep K. S. Gupta Arizona State University Department of Computer Science and Engineering Jennifer Weinmann Wayne State University Department of Electrical and Computer Engineering Additional Authors: Ayad Salhieh, Vikram Shankar, Valliappan Annamalai, Manish Kochhal, and Greg Auner. 1This material is based upon work supported by the National Science Foundation under Grants ANI-0086020 and DGE-9870720 and the Kresge Eye Institute.

  2. “Typical” Future Sensor Node • Matchbox Size • Battery Powered • Power-conserving processor – 100’s of MHz • 10’s of MB of program and data memory • Radio modem using TDMA • Capable of running a scaled down version of Palm OS or Windows CE

  3. Biomedical Smart Sensors?? • Smart Sensor – Biomedical sensor/actuator with integrated circuitry • Biomedical – Implanted in the human body • Form – Small with limited power, encased in inert material • Function – Alleviate chronic diseases and disabilities, monitor health

  4. Biomedical Sensors are Unique! • Limited Computation and Data Storage • Ultra Low Power Consumption • Wireless Communication • Continuous Operation • Inaccessibility • Bio-Compatibility – Material Constraints • Robustness and Fault Tolerance • Secure Data Communications • Regulatory Requirements

  5. Example Applications • Glucose Level Monitor • Transplant Organ Viability Monitor • Blood Monitor • Retinal and Cortical Prosthesis • Cancer Detection/Monitor • Health Monitor

  6. Retinal and Cortical Implant

  7. Data Processing and Communication

  8. Smart Sensor Retinal Interface

  9. Functional Block Diagramof the Retinal Neuron Scanner

  10. Research Approach • Optimize across protocol layers • Organize communication among sensor nodes • Develop application-specific solutions • Take advantage of biomedical sensor features – fixed topology, pre-defined communication and known membership • Generalize these solutions

  11. Research on Fixed Topologies • Vary # of Neighbors • Trade-offs Exist • Number of Hops • Number of Receivers • Amount of Contention • Evaluate Power Usage • Test Power-Aware Routing

  12. Research on Fixed Topologies • Power-Aware Routing reduces Power Usage • 3D is better than 2D • 4 Neighbor Topology has lower Power Use • Reason is always fewer Receptions • Current work includes improving protocols

  13. Research Objectives • Strict Power Management • Efficient Wireless Spectrum Use • Scalability – Support as Many Sensing Elements as Possible • Support Diagnostic Functionality • Standardize Design with Other Research Groups

  14. Multidisciplinary Research Smart Sensors and Integrated Devices Materials Characterization (Microstructure, optical, electrical) Materials Development Materials Simulation, Device Simulation, Design, and Testing Device Development and Prototyping Device Simulation Design and Testing Materials Processing (Special lithography and device fabrication development) Electronic Integration Design Data Communications and Interface Design VLSI Circuit Development Intelligent system Design and Development (Neuronet, logic) Hybrid Technology and Packaging Device Characterization, Testing, and Evaluation

  15. Retina and Cortical Implant Project Ophthalmology Gary Abrams, MD Raymond Iezzi, MD Alexander Dizoor, PhD Neurosurgery Pat McAllister, PhD Robert Johnson, MD Janet Miller, B.S. Hun Park, MD, PhD Todd Frances, M.S. Veterinarian Liz Dawe, D.V.M. Smart Sensors and Integrated Microsystems Gregory W. Auner, PhD Pepe Siy, PhD Loren Schwiebert, PhD Vaman Naik, PhD Ratna Naik, PhD Lowell Wenger, PhD Xiaoyan Han, PhD Yuriy Danylyuk, grad student Dan Durisin, engineer Francette Fey, grad student (NSF IGERT) Sam George, research assistant Changhe Huang, PhD Chantelle Hughes, grad student (NSF IGERT) Michael Lukitsch, grad student (NSF IGERT) Marvie Nickola, grad student (NSF IGERT) Mona Safadi, grad student (NSF IGERT) David Sant, grad student Flaminia Serina, M.S. (NSF IGERT) Margarita Thompson, PhD Jennifer Weinmann, grad student (NSF IGERT) Jie Xu, professor Song Xu, PhD Feng Zhong, grad student Ayad Salhieh, grad student (NSF ITR) Manish Kochhal, grad student (NSF ITR) Changli Jiao, grad student

More Related