1 / 37

Capire i processi di aggregazione: Gas, molecole, liquidi, solidi

Lo studio della struttura della materia è rivolto a:. Capire i processi di aggregazione: Gas, molecole, liquidi, solidi Capire l’origine delle proprietà fisiche dei materiali: -Proprietà e comportamento di molecole più o meno complesse

Download Presentation

Capire i processi di aggregazione: Gas, molecole, liquidi, solidi

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lo studio della struttura della materia è rivolto a: • Capire i processi di aggregazione:Gas, molecole, liquidi, solidi • Capire l’origine delle proprietà fisiche dei materiali: -Proprietà e comportamento di molecole più o meno complesse -Perché i solidi sono superconduttori, conduttori, semiconduttori o isolanti? -Perché materiali sono magnetici e altri no? - etc… • Capire come i diversi materiali possono essere utilizzati nella tecnologia. • Ricercare e “costruire” nuovi materiali con caratteristiche “convenienti”

  2. Le applicazioni sono molteplici: • Microprocessori più veloci • Immagazzinamento dati • Sorgenti laser • Trasmissione dell’energia • Accumulazione dell’energia • Biotecnologie • Nanotecnologie • Catalisi • Tecnologie pulite • etc. etc…….

  3. Struttura della materia La Fisica della materia si occupa di studiare i fenomeni che avvengono a livello delle dimensioni atomiche È la teoria quantistica dei sistemi a molte particelle 6

  4. Verso la teoria quantistica della materia • Fino alla fine del 1800 si pensava che l’atomo, neutro, fosse il costituente elementare della materia • Nel 1869 si conoscevano 62 diversi elementi che Mendeleyev classificò e ordinò in una tavola periodica in base al loro peso atomico e alle loro proprietà chimiche comuni.

  5. Nel 1897, studiando la deflessione dei raggi catodici (luce di fluorescenza emessa in un tubo catodico a seguito del passaggio di elettroni), Thomson scoprì l’elettrone. e : carica negativa; massa << massa atomica Modello a “panettone” dell’atomo: gli elettroni sono contenuti in una “torta” uniforme carica positivamente

  6. Nel 1912, Rutherford scoprì il nucleo con esperimenti di scattering. Modello planetario dell’atomo: l’ atomo è costituito da un nucleo centrale carico positivamente e da elettroni che gli ruotano intorno come fanno i pianeti intorno al sole; tutte le orbite sono possibili (r dipende da v)

  7. Incongruenze del modello planetario dell’atomo: • stabilità degli atomi • classicamente, una carica in movimento emette energia sotto forma di radiazione; in base alle conoscenze dell’epoca l’elettrone sarebbe dovuto cadere sul nucleo

  8. Forma degli spettri atomici • Quando un corpo viene riscaldato, ad esempio il filamento di una lampadina, emette radiazioni elettromagnetiche di diversa lunghezza d’onda . • Se queste radiazioni, separate in  con un prisma, vengono inviate su una lastra fotografica, si ottiene uno spettro continuo. • Al contrario se eccitiamo dei singoli atomi, ad esempio con un arco elettrico, ed andiamo ad analizzare le radiazioni emesse, si ottengono degli spettri a righe (chiamati anche spettri atomici).

  9. Le linee spettrali degli atomi sono diverse per ciascun atomo

  10. Nel 1913 il modello planetario viene “quantizzato” da Bohr sulla base della teoria dei “quanti” introdotta in precedenza da Planck Nel 1901, per spiegare l’emissione di corpo nero, Planck aveva ipotizzato che la radiazione fosse emessa in “quanti” di energia E = nh dove h è la costante di Planck e  la frequenza della radiazione

  11. L’atomo di Bohr Postulati di Bohr: • gli elettroni si muovono su orbite soggette alla condizione che il • momento angolare sia un multiplo intero di ħ. Per orbite circolari: • mvr=n • gli elettroni non irradiano energia quando si trovano in un'orbita • stazionaria,definita dalla condizione precedente • l’atomo è in grado di emettere o assorbire energia solo • quando l’elettrone si sposta da un orbita all’altra.

  12. v Forza coulombiana m x accelerazione centripeta Quantizzazione del raggio dell’orbita F=ma ricaviamo: quantizziamo da cui: Raggio di Bohr

  13. Quantizzazione dell’energia dove

  14. Pieno accordo con i dati sperimantali! L’atomo di Bohr risolve i problemi del modello planetario ma è ancora essenzialmente classico: gli elettroni sono particelle corpuscolari che si muovono classicamente intorno al nucleo

  15. Elettroni Raggi X Davisson e Germer 1927 Nel 1924 De Broglie formulò l'ipotesi rivoluzionaria: anche le particelle sono onde E100eVÅ Ipotesi confermata da esperimenti di diffrazione

  16. Le orbite dell’atomo di Bohr in cui l’onda elettronica è stazionaria: 2rn=n for n=1,2,3,… L’atomo di Bohr-De Broglie: Se la lunghezza d’onda non è corretta l’interferenza distrugge l’onda stessa: atomo instabile

  17. La condizione sulla lunghezza d’onda coincide con la quantizzazione del momento angolare postulata da Bohr

  18. Nasce la meccanica ondulatoria: • Principio di indeterminazione di Heisenberg : • Equazione di Schroedinger • Densità di probabilità di Born |(r,t)|2 esprime la probabilità che la particella si trovi, in un determinato istante, in una certa posizione dello spazio

  19. He 2 Li 3 Be 4 5 B 2s 2p 1s 2s 1s 2 2 2 Atomi con più elettroni

  20. Modi di aggregazione degli atomi nella materia Molecola Proteina MateriaLiquida Solido amorfo Monocristallo

  21. a molecola Su che distanze si legano gli atomi? Solido Legame covalente Si ridistribuisce la carica elettronica distanze tipiche di legame a~Å

  22. Strumenti ed esperimenti • Per poter apprezzare le grandezze caratteristiche della fisica alle dimensioni atomiche (1 Å) è necessario utilizzare sonde con dimensioni paragonabili. • : la luce, avendo lunghezza d’onda  ~ 5000 Å può fornirci solo informazioni medie. Attraverso Microscopio elettronico e Microscopio Tunnel a Scansione oggi possiamo visualizzare direttamente gli atomi

  23. Lo sviluppo tecnologico permette oggi di costruire materiali e dispositivi su scala nanometrica: nanofisica e sistemi a bassa dimansionalità 100 m 1 m Natura Oggetti artificiali 10-1 m Progresso nella miniaturizzazione 10-2 m Objects fashioned from metals, ceramics, glasses, polymers ... 1 mm 10-3 m Head of a pin 1-2 mm Monarch butterfly ~ 0.1 m MEMS (MicroElectroMechanical Systems) Devices 10 -100 mm wide Microelectronics 10-4 m The Microworld Bee ~ 15 mm 10-5 m Dust mite 300 mm Quantum dot array -- germanium dots on silicon 1 mm 10-6 m Progresso nella comprensione a livello atomico Visible spectrum Human hair ~ 50 mm wide Indium arsenide quantum dot Fly ash ~ 10-20 mm 10-7 m The Nanoworld 10-8 m Red blood cells with white cell ~ 2-5 mm 1 nanometer (nm) 10-9 m 10-10m DNA ~2 nm wide Atoms of silicon spacing ~tenths of nm Quantum corral of 48 iron atoms on copper surface positioned one at a time with an STM tip Corral diameter 14 nm

  24. Scanning Tunneling MicroscopySTM Portando una punta metallica molto vicino alla superficie, ed applicando una piccola tensione di (0.02-2 V) gli elettroni possono attraversare la barriera per effetto “tunnel”. Questo effetto quantomeccanico può essere sfruttato per visualizzare gli atomi di una superficie a causa del comportamento esponenziale della corrente di tunnel in funzione della distanza punta-campione.

  25. Interazione punta- campione Si sviluppa una barriera di potenziale

  26. W Barriera trapezioidale a Effetto tunnelBarriera di Potenziale Coefficiente di trasmissione in approx WKB (Gasiorowicz p.84-89) T

  27. Effetto tunnel – I vs V applicando una tensione V, la corrente che scorre tra i due elettrodi posti a distanza a è data da: I~nA-pA varia esponenzialmente con la distanza a: un ordine di grandezza per Å!

  28. Tensione di controllo per il tubo piezoelettrico tubo piezoelettrico con elettrodi Amplificatore della corrente di tunnel Controllo della distanza e unità di scansione Punta Trattamento dati e visualizzazione campione Tensione di Polarizzazione

  29. Crescita controllata a livello atomico Deposizione Si 1 Å/s - 8 nm

  30. Crescita di punti quantici di Ge/Si

  31. Studio delle proprietà termodinamiche dei materiali

  32. Studio di materiali biologici DNA

  33. Assemblaggio di atomi tramite la punta di un STM “Recinto quantistico” ovvero trappola per elettroni realizzata all’IBM di Almaden (CA) da 48 atomi di Fe disposti in cerchio tramite la punta STM. La punta e’ stata poi utilizzata per ottenere l’immagine

  34. Programma di Elementi di Struttura della Materia • a.a. 2006-2007 • Fisica Atomica: • L’atomo di Bohr e nascita della meccanica quantistica • Atomi idrogenoidi: • funzioni d’onda, numeri quantici e livelli energetici; Struttura fine dei livelli • energetici; • Atomi a due elettroni: modello a particelle indipendenti; calcolo perturbativo e variazionale dell’effetto • della repulsione coulombiana tra gli elettroni • Atomi a molti elettroni:modello a particelle indipendenti in approssimazione di campo centrale; livelli energetici di singolo elettrone; riempimento dei livelli energetici e configurazione elettronica degli atomi; tavola periodica degli elementi; Correzioni all'approssimazione di campo centrale, accoppiamento L-S. • Spettri atomici • Principi della spettroscopia • Interazione degli atomi con la radiazione elettromagnetica • Teoria delle perturbazioni dipendenti dal tempo; Probabilità di transizione: assorbimento, emissione spontanea e stimolataRegole di selezione in approssimazione di dipolo

  35. Fisica Molecolare • Separazione tra il moto dei nuclei e il moto degli elettroni • Soluzione del problema elettronico in molecole biatomiche • Metodo degli orbitali molecolari e approssimazione LCAO; • molecole omonucleari: • Molecola H2+ • Stato fondamentale della molecola H2 • Soluzione del problema nucleare nelle molecole biatomiche: • vibrazione e rotazione delle molecole • Spettri molecolari • Fisica dei solidiFormazione delle bande nei solidi • Teorema di Bloch e classificazione degli stati elettronici nei cristalli • Modello di elettrone libero e quasi libero • Occupazione degli stati elettronici • Metalli, isolanti e semiconduttori • Modello di Drude per la conducibilità elettrica.

  36. Libri di testo: Fisica atomica e molecolare: B.H.Bransden, C.J.Joachain: Physics of Atoms and Molecules. Longman. Dispense (disponibili sulla pagina web del corso) Fisica dei solidi Dispense (disponibili sulla pagina web del corso) Libri consigliati: Eisberg-Resnick: Quantum Physics of atoms, molecules, nuclei and particles. Wiley and sons Alonso Finn: Fundamental University Physics III Quantum and statistical physics Addison Wesley P. W. Atkins, R. S. Friedman Meccanica quantistica Molecolare. Zanichelli Ashcroft-Mermin: Solid State Physics. Saunders College.

More Related