This presentation is the property of its rightful owner.
Sponsored Links
1 / 47

第四章 受弯构件的正截面受弯承载力 PowerPoint PPT Presentation


  • 77 Views
  • Uploaded on
  • Presentation posted in: General

第四章 受弯构件的正截面受弯承载力. 构件的构造. 试验研究的主要结论. 基本假定. 矩形、 T 形截面承载力计算. 4.1 受弯构件的一般构造. 4.1.1 受弯构件的一般构造. 与构件的计算轴线相垂直的截面称为正截面。 结构和构件要满足承载能力极限状态和正常使用极限状态的要求。梁、板正截面受弯承载力计算就是从满足承载能力极限状态出发的,即要求满足 M ≤ M u (4—1)

Download Presentation

第四章 受弯构件的正截面受弯承载力

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


5282403

  • T


5282403

4.1

4.1.1

MMu (41)

MMu

1

TI L


5282403

(2)

1)h/b2.03.5Th/b2.54.0(b)Tb100120150(180)200(220)250300mm300mm50mm

2)h2503003507508009001000mm800mm50mml00mm

3)(b=1000mm)


5282403

3

1C20C30C40

2 HRB400RRB400()HRB335()12mm14mm16mm18mm20mm22mm25mm3(4)

3HPB235()HRB335()HRB400()6mm8mm10mm

4HPB235()HRB335()6mm8mm


5282403

4

ah0hahh0hh0bh0b

Asmm2Asbh0

() 42)


5282403

5

c


5282403

b

h

0

h

e

c

x

n

e

s

4.2

4.2.1

f

As

a


5282403

e

b

c

f

x

M

n

b

h

h

0

As

a

e

s

b

h

0

h

c

f

x

n

h

0

h

As

a

e

e

c

s

f

x

t

n

f

M

As

e

s

a

e

M

cr


5282403

f

b

b

b

M

y

As

h

h

h

0

0

0

h

h

h

a

f

y

f

M

As

e

e

e

c

c

c

a

x

x

x

f

n

n

n

y

f

e

e

e

s

s

s

As

a

M

u

f


5282403

  • :

--

Mcrtu0IIa


5282403

M0=Mcr0tu0I


5282403

fy0a

1)2)3)


5282403

Mu0a

zMu0My0


5282403

M/

M

u

M

u

a

M

a

y

M

a

cr

0

f

1)2)3)cu4)


5282403

M/

M

u

M

u

a

M

a

y

M

a

cr

0

f

aMcr

aMu


5282403

s2030kN/mm2

2030kN/mm2<s<fy0

sfy0

Ia

a


5282403

4.2.2

1

1Mcrft

2Mcr My,

3MyMu


5282403

2

1minb

2b<min

3>b


5282403

4.1.2

1

1)

2)

3) :

0.01

4)


5282403


5282403

(2)


5282403

xcb


5282403

h0

xb

fy

b(420)xbx

b


5282403

3

aIa

(1)0245ft/fy

(2)0.15


5282403

a

f

c

a

=

C

f

bx

c

b

=

x

x

n

M

fy

=

T

A

s

s

2

1


5282403


5282403

M

bh(h0)Asfyfc

x bh(h0)Asfyfc

ash01

()as=35mmas=50~60mm as=20mm


5282403

bh(h0)As fyfc

Mu>M

xMu

xxbh0 Mu=

As<rminbh


5282403

MuMMuM

As


5282403

A

'

s

A

s

2


5282403

  • b


5282403

e

cu

s

=

'

'

C

A

s

s

s

as'

e

x

'

s

A

M

a

s

=

C

f

bx

c

c

h

0

A

s

=

T

f

A

a

y

s

e

>

y


5282403

As1

As2


5282403

As2As2


5282403


5282403

x = xb

Mbhaa fy fy fc

x As As


5282403

bhaaAsAsfy fyfc

MuM

x Mu

x >xbMu=?

x<2aMux2a:


5282403

3T

  • ( ) T

  • T


5282403

T

T


5282403

T

bf'

x xbT

AsrminbhbT

T

Asrmin[bh + (bf -b)hf]


5282403

T

=

+


5282403

T

=

+


5282403

N

Y

As1

Asrminbh

T

T

?


5282403

As

1)

2)


5282403

As2


5282403

Mu

1)

2)


5282403

MuM ?


  • Login