1 / 32

化學教育 碩士班研究生

ashanti
Download Presentation

化學教育 碩士班研究生

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. C405研究室 August 20, 2007 有機光物理與光化學OrganicPhoto -chemistry and –physics科(化)學教育Science (Chemical) Education主持人:方泰山E-mail: chetsf@scc.ntnu.edu.tw http://icho.chem.ntnu.edu.tw/fang/index.htm國立台灣師範大學化學系教授http://www.chem.ntnu.edu.tw/chinese/sub/m2/teacher/5/5.htm台灣參加2007 39th IChO計畫主持人http://icho.chem.ntnu.edu.tw

  2. 化學教育碩士班研究生 碩士班: 林嘉祺(碩1):化學奧林匹結構與評量的研究 鄭嘉華(碩3):化學奧林匹理論試題評量的研究 (96/6/6通過口試) 陳穩仁(碩2) :IRT檢視16NChO化學奧林匹初選 (96/6/6通過口試) 教碩班(在職碩士班研究生) 楊惠如(桃園縣大有國中教師) (碩3) 探究國中生迷失概念診斷式的評量 詹慧玲(台北市麗山國中教師) (碩3): 結合科學閱讀與研究活動促進國中生理化的學習 宋秀芬(苗栗縣西湖國中教師) (碩3) 探究國中生科學概念學習和城鄉差距

  3. 2005 37th IChO 英文總報告(2005年12月):“2005 Proceedings of The 37th IChO” Official Report (English), pp.1-151 with catalyzers,Dec. 2005

  4. 2005 37th IChO 中文總報告(2005年12月):中華民國國(台灣)主辦2005第37屆國際化學奧林匹亞競賽,中文總報告 pp.1-398,民94年12月

  5. Research on IChOs: IRT and CTT Used in Examining Tasks

  6. 第二十二屆中華民國科學教育學術研討會公告 全文論文彙編光碟目前已收稿完成,預計於3月中可以郵寄給各位,請惠予上網(網址 http://140.122.146.152:8080/22se/address.asp填寫您的地址及郵遞區號(必填),或至 報名網頁處 進行查詢和登錄,以方便郵寄給您,謝謝。全文論文彙編光碟線上瀏覽:http://140.122.146.152:8080/22se/publish.htm。                                                       科教年會   網管人員    2007/02/27 吳佳儒、鄭嘉華、陳穩仁、方泰山* "第卅七屆國際化學奧林匹亞競賽實作有機合成試題評量之研究“ 中華民國第22屆科學教育學術研討會(Dec.15-16,2006)論文彙編pp.384-390 (-短篇論文-口頭發表-上傳編號110)

  7. 有機光化學與光物理(在職博士班研究生) • 1.有機芳香酮激合體的光物理與光化學 (博七陳順基(明志技術學院化學工程系講師))。 • 2. 有機化合物的氧化化學發光 (博八鄧昌蔚(台北縣三和國中教師)。 • 3. 秋水仙素與甲硫秋水仙素之光化學與光物理 (博三孫崇文(經濟部商品檢驗局薦任技士))。

  8. 有機芳香酮激合體的光物理與光化學: 陳順基(博七)"The Anomalous Triplet Exciplex Emission of 4-phenylbenzophenones with Amines" Cheh-Yung Liu and Tai-Shan Fang poster pater, The Fifth International Symposium For Chinese Organic Chemists, Tianjin, china, Aug. 20-23, 1998."芳香單酮與α-芳香雙酮在有機溶液的光物理與光化學"陳順基,方泰山,;化學 (中國化學會)"The photophysics and photochemistry of Aromatic Ketones and α-Diketones in Organic Solution“Chemistry (The Chinese Chem Soc.,TAIPEI) Vol.55, No.4.pp29~43, Dec., 1997.

  9. 有機芳香酮激合體的光物理與光化學(1): 陳順基(博七) Structured phosphorescence with 32 s life time [480nm, 510nm(max),] from 4-phenylbenzophenone(4-PBP) was quenched by triethylamine (TEA) in benzene. An exciplex emission with strutureless 40 s life time peaking at 648nm. A quenching mechanism has been proposed to involve a mixed (π,π*)and (n,π*) triplet of 4- PBP to form an exciplex with the ground state of TEA.

  10. 有機芳香酮激合體的光物理與光化學(2): 陳順基(博七)

  11. 有機芳香酮激合體的光物理與光化學(3): 陳順基(博七) • The important experimental spectroscopic characteristics of exciplexes are : • 1. The observation of a new emission band which is characteristic of the exciplex but not of the components of the exciplex. • 2. A concentration dependence of the new mission intensity.

  12. 有機芳香酮激合體的光物理與光化學(4): 陳順基(博七)

  13. 有機芳香酮激合體的光物理與光化學(5): 陳順基(博七) • BP的最低參重態為n ,π*和PBP的參重態π,π*大不相同,而以胺類當淬熄劑時,在BP中看不見激合體磷光,但在PBP的化合物中可見其激合體磷光。 • TEA會淬熄PBP磷光也會同時淬熄激合體的磷光,在淬熄PBP磷光方面,其淬熄速率和擴散速率相近。 • 當TEA在小的濃度範圍內(約5x10-5M),,kq約為 2x109M-1S-1,為動態淬熄(Ksv)主導, 其kq較接近擴散速率,但當濃度再增加時,其kq約為5x108M-1S-1,此時慢慢由靜態淬熄(K)所主導。

  14. Direct Evidence of Exciplex Formation of 4-Phenylbenzophenone with Triethylamine Shun-Chi Chena (陳順基), Tai-Shan Fangb* (方泰山)aDepartment of Chemical Engineering, Mingchi University of Technology, Taishan, Taipei, Taiwan, 243, R.O.CbDepartment of Chemistry, National Taiwan Normal University, Taipei, Taiwan, 116, R.O.C • Abstract: Exciplex formation of 4-phenylbenzophenone (PBP) with triethylamine (TEA) in benzene has been studied by steady state fluorescence measurements. Evidence for exciplex formation can be provided by the observation of emission at longer wavelengths than that of PBP. The quenching mechanism has been proposed to involve a triplet of PBP to form an exciplex with the ground state of TEA. Some interesting features of the exciplex were observed which have been attributed to the lowest excited triplet state of the PBP molecule. Similarly, the exciplex is also formed with excited state of 2-benzoylfluorene (BF) and TEA. Several factors including the solvent polarity, temperature, and nature of the chromophore have been shown to influence exciplex formation and stability. The difference of the photophysics between PBP and benzophenone (BP) probably plays an important role in electron-transfer process. Keywords: exciplex; 4-phenylbenzophenone; 2-benzoylfluorene • 詳見附件2 (正投稿 Chemical Physics Letter and/or Journal of Photochemistry and Phtobiology )

  15. Direct Evidence of Exciplex Formation of 4-Phenylbenzophenone with Triethylamine  Shun-Chi Chen(陳順基) and Tai-Shan Fang*(方泰山) 穩態淬熄分析: steady-state的Stern-Volmer動力學理論式為 Φ0/Φ=1+kqτ[Q] 利用磷光生命期及濃度做Stern-Volmer分析可得下列方程式: τobs-1=τo-1+kq [Q] Abstract Exciplex formation of 4-phenylbenzophenone (PBP) with triethylamine (TEA) in benzene has been studied by steady state fluorescence measurements. Evidence for exciplex formation can be provided by the observation of emission at longer wavelengths than that of PBP. The quenching mechanism has been proposed to involve a triplet of PBP to form an exciplex with the ground state of TEA. Some interesting features of the exciplex were observed which have been attributed to the lowest excited triplet state of the PBP molecule. Similarly, the exciplex is also formed with excited state of 2-benzoylfluorene (BF) and TEA. Several factors including the solvent polarity, temperature, and nature of the chromophore have been shown to influence exciplex formation and stability. The difference of the photophysics between PBP and benzophenone (BP) probably plays an important role in electron-transfer process. Conclusion The unique feature of this work lies in the observation of triplet state exciplex formation of PBP with TEA, TPA. We have attempted to explain the deviation of these PBP-TEA exciplexes from BP in terms of the photophysic properties of excited state. BP triplet which is n,* in character displays strong phosphorescence emission but does not to exhibit exciplex emission. PBP, (similar in BF) which has the lowest ,* triplet is a good sensitizer but exhibit weak phosphorescence. In addition, the donor effect, acceptor effect and solvent effect of exciplexes may be used as evidence for excited complex. Temperature effect can be estimated for kinetic parameters of the exciplexes. 國立臺灣師範大學化學研究所 有機光化學實驗室 C405 指導教授:方泰山 教授

  16. 有機化合物的氧化化學發光(1): 鄧昌蔚(博七) (台北縣三和國中教師) (1)過氧草酸酯系統:此系統於室溫下化學發光的動力論。S.J. Shin-Chen, T.-S. Fang and S.-H. Wu, 1991, "Study on the Commercial Safety lightsticks-Dhemilinescence of Peroxyoxalate-The Impotence of Catching 1,2-Dioxetandione" v.44,pp109-120, 計畫編號 : NSC-75-0208-M-003-03 (2)光敏靈系統化學發光,利用能鑑別高能量單重態-三重態電子能量傳遞的DPA、DBA和低能量單重態-三重態電子能量傳遞的BPEA、BPEABr,來研究光敏靈分子間能量傳遞的情形。Tai-Shan Fang and Lien-tseng Wu ”Review of sixty years luminol chemiluminescence” chemistry (1985)

  17. 有機化合物的氧化化學發光(2):鄧昌蔚(博八) (3)雙氧烷過氧化物系統化學發光,探討並統整本實驗室三大標題化合物A、B、C,針對其臭氧化化學發光反應其伴隨的的反應性質,推究其反應機構並探討其化學發光性質。化合物A、B、C、D由AAQ(anthracenequinone)、ANQ(acenaphthenequinone)及PNQ(phenanthrenequinone)分別與2,3-二甲基-2-丁烯進行光加成反應而得。將化合物A、B、C分別溶於二氯甲烷中,並在-78℃下進行臭氧化反應,當溫度慢慢回復至室溫,可以發現化合物A、B均有化學發光的現象,而化合物C則無此現象,致光物質經實驗證實為1,2-雙氧烷(1,2-dioxetane),而主產物為經臭氧化重排的穩定過氧化物,我們亦將三種標題化合物進行臭氧化反應後的反應機構亦作深入的探討與比較。Tai-Shan Fang and Wong-Ping Mei, Tetrahedron Letter, 1986(compound B) 化合物A 化合物B 化合物C 化合物D

  18. 有機化合物的氧化化學發光(3):鄧昌蔚(博八) ★ 本實驗室將上述化學發光的兩大系統(過氧草酸酯類系統、光敏靈系統)的研究成果,轉化成兩套「由化學能轉換成光能的示範實驗」之方便教具,並溶入高中教材當中,成果並發表於「化學」期刊四十二卷第三期。 (1)其中所述「光敏靈系統」的示範方法是:將0.1克光敏靈溶在10毫升5﹪NaOH溶液裡構成甲溶液,令在10毫升3﹪H2O2中加入些許催化劑如赤血鹽構成乙溶液;將甲溶液和乙溶液混合一起,則會激起漂亮的天藍色可見光。 (2)而「過氧草酸酯系統」的示範步驟為:準備一張可吸液體的濾紙或衛生紙(宣紙亦可),並準備約10-3M的螢光劑溶液-天藍色(如9,10-二苯蒽)、紫色(如蒽)、黃綠色 [如9,10-(乙炔苯)基蒽]、橘紅色(如路卡寧,Rubrene)和紅色(如柔達命B,Rodamine B)等分別溶於鄰二甲基酯苯二酸(dimethyl phthalate),並準備一可壓擠的氯化乙二醯純液;示範時,先在所預備吸液紙上不同位置各滴2~3滴螢光劑溶液,再於其上各滴2~3滴30﹪過氧化氫溶液,再壓擠氯化乙二醯塑膠滴瓶,使其滴嘴噴向塗有螢光劑之吸液紙,此蒸氣就可把紙片點綴得金碧輝煌,煞是壯觀。

  19. 有機化合物的氧化化學發光(4):鄧昌蔚(博八) (3)過氧化物系統: 本實驗室長久致力於芳香族雙醚烯化合物(dioxene)相關反應,其中著墨於臭氧化反應和單態氧化反應尤甚,並研究其臭氧化化學發光。以下乃再探究並統整本實驗室三大標題化合物A、B、C,針對其臭氧化化學發光反應其伴隨的的反應性質,推究其反應機構並探討其化學發光性質。 而此系列的反應會生成雙氧烯醚類的過氧化物,尤其是標題化合物B所進行的臭氧化反應得到的中間臭氧化物卻意料之外的特別安定,且在低溫之下進行臭氧化反應時,大多數均有化學發光的現象,因此將統整本系統做統脈絡式的研究。

  20. 有機化合物的氧化化學發光(5):鄧昌蔚(博八) ★ 標題化合物A、B、C均屬於極性小,易溶於非極性溶液中的特殊結構之化合物,在氧化過程中溶液由顏色的變化來控制反應時間,尤其是反應激烈的臭氧化反應,即用此亦於觀察的顏色變化來控制反應時間。無論是化合物A或B在低溫之下與臭氧反應均有化學發光的現象,而化合物C則無。推究原因可能因為(1)標題化合物C可能是形成雙酯化合物並非由臭氧中少量單態氧而來,而是經由臭氧反應後重排而得。(2)標題化合物C因聯苯較易鬆動於溶液中易因分子扭動而分散能量,以熱的方式釋放。(3)標題化合物C之臭氧化反應的機構有別於化合物A與B。反觀化合物A和B其臭氧化反應中也都有雙酯化合物的生成,推測其在低溫時進行臭氧化反應皆生成1,2-雙氧烷(1,2-dioxetane)之致光中間產物,化合物B的中間過氧化物特別穩定。

  21. 有機化合物的氧化化學發光(6):鄧昌蔚(博八) ★ 縱觀上述之三大標題化合物,得到一重要結論,無論是標題化合物A、B或C在進行臭氧化反應時,產物中均有一雙酯類產物(diester);而由標題化合物A與B得到的雙酯類化合物,臆測是由臭氧當中少部分的單態氧參與反應而得,因此雙酯類產物的產率並不高。另外標題化合物C進行臭氧化反應時,雖然也有雙酯類產物生成,但因為標題化合物C的取代基為聯苯時,化學鍵溶液扭動而造成能量的改變,臆測其形成雙酯類產物的路徑有別於標題化合物A和B。至今化學界對標題化合物A研究的人相當少,對標題化合物A、B和C綜合性的研究更是寥寥可數。因此希望本實驗室的研究成果能帶給化學界一點微薄的貢獻,讓化學界對於芳香族雙醚烯類(dioxene)化合物有更深一步的了解。

  22. Ozonation and Chemiluminescence of Polycyclic Aromatic Vicinal Dioxenes Chang-Wei Teng (鄧昌蔚) # and Tai-Shan Fang (方泰山) * # Taipei County Sanhe Junior High School, Sanchong, Taipei County, Taiwan, 24154, R.O.C. * Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan, 11677, R.O.C. Abstract Oxidizing chemiluminescence of polycyclic aromatic vicinal dioxenes has been studying in our laboratory, especially focussed on ozonization and singlet oxygen reactions. The report is mainly to revisit and summarize the chemiluminescence properties and their reactions of compounds A1,2,3, B4, C5,6 and D7 respectively, with ozone and singlet oxygen. Polycyclic aromatic vicinal dioxenes A, B, C and D are synthesized by the Photo-Diels-Alder Reactions of ANQ (acenaphthenequinone), PNQ (phenanthrenequinone), AAQ (anthracenequinone) and PRD (pyrene-4,5-dione), respectively, with 2,3-dimethyl-2-butene (TME) in benzene. The compounds A, B, C and D are respectively dissolved in dicholoromethane and ozonized at low temperature (-78℃). When warms up the solutions to room temperature, one can obviously see both ozonides A and C emit beautiful light, but ozonides B and D don’t. Evidence shows that the identify of chemiluminescence is the dioxetanes which are the same with the products obtained when the compounds A, B, C and D reacts, respectively, with singlet oxygen. The major product in this process is the rearranged ozonized adduct. The mechanism of chemiluminescence as well as the ozonizaton is to be discussed. The process of reaction with singlet oxygen of compound C (by NMR) The flow chart of reaction of compound D Conclusion Compounds A, B, C and D are all little-polar compounds with special construction and easily dissolved in non-polar solutions. The solutions are controlled reaction time for the color change, especially in violent oxidized process of ozone or singlet oxygen. Therefore, we can use the observational color change to control the reaction time. Compounds A, B, C and D are respectively ozonized at low temperature in dicholoromethane, we can get the diesters from products of ozonides A, B, C and D. When warms up the solutions to room temperature, one can obviously see both ozonides A and C emit beautiful light, but ozonides B and D don’t. We infer the probable reasons such as : (a) Compound B and D may form diesters which should be got from reacting with ozone to rearrange but not little singlet oxygen in producting ozone processes. (b) Mechanisms of ozonization of compound B and D are different from compound A and C. On the other hand, chemiluminescences are observed while compounds A, B, C and D react with singlet oxygen under low temperature. However, there are electron-withdrawing polycyclic aromatic rings with good fluorescent effects on one side of the double bond of the compounds A, B, C and D and electron-donating alkoxys with activating the double bond on the other side. The special constructions make the activity of double bond just right and react with singlet oxygen to produce chemiluminescences. ABCD The diester spectrum of reaction with ozone or singlet oxygen of compound A Reference 1、T.-S. Fang, W.-P. Mei, J.-H. Chang, S.-J. S. Chen J. Chin. Chem. Soc.1985, 32(4), 457-460. 2、T.-S. Fang, W.-P. Mei Tetra. Lett.1987, 28, 329. 3、W.-P. Mei Thesis for the Master Degree of Science, Dept. of Chem., NTNU1986, 22-54. 4、S.-L. Zhou Thesis for the Master Degree of Science, Dept. of Chem., NTNU1989, 14-47. 5、S.-C. Chan Thesis for the Master Degree of Science, Dept. of Chem., NTNU1992, 19-62. 6、S.-Y. Chien Thesis for the Master Degree of Science, Dept. of Chem., NTNU2001, 25-44. 7、Jie Hu, Dong Zhang, Frank W. Harris J. Org. Chem.2005, 70, 707-708. 國立臺灣師範大學化學研究所 有機光化學研究室 C405 方泰山教授指導 (Advisor: Prof.T.-S.Fang)

  23. 秋水仙素與甲硫秋水仙素之光化學與 光物理性質之再探討孫崇文(博三) (1) • 秋水仙素(colchicine)<1>於甲醇照光,分別可得兩種產物,其為β-lumicolchicine<2>、γ-lumicolchicine<3>。而其中將β-lumicolchicine<2>繼續照光,可得α-lumicolchicine<4>,此兩主題化合物之β、γ-isomer互為順反異構物,而α-lumicolchicine<4>則為β-lumicolchicine<2>之head-to-head dimer。 • 甲硫秋水仙素(methylthiocolchicine)<5>於甲醇照光,分別可得兩種產物,其為β-lumithiocolchicine<6>、γ-lumithiocolchicine<7>。

  24. 秋水仙素與甲硫秋水仙素之光化學與 光物理性質之再探討孫崇文(博三)(2)

  25. 秋水仙素與甲硫秋水仙素之光化學與 光物理性質之再探討孫崇文(博三)(3)

  26. 秋水仙素與甲硫秋水仙素之光化學與 光物理性質之再探討孫崇文(博三) (4)

  27. 秋水仙素與甲硫秋水仙素之光化學與 光物理性質之再探討孫崇文(碩論文) (5) • 秋水仙素與甲硫秋水仙素二者之光化學與光物理之性質非常類似,於甲醇中照光分別可得β、γ-isomer,且彼此之β、γ-isomer互為順反異構物。秋水仙素中之β-isomer繼續照光可得head-to-head dimer:α-isomer,而甲硫秋水仙素之光化學甚小於秋水仙素,約為1/102~1/103的數量級。 • 秋水仙素與甲硫秋水仙素在常溫下不具螢光,低溫下有些許螢光產生,無預期的磷光出現,而各項光照產物在常溫下已具螢光,低溫下螢光加強,無磷光產生,此外不同溶劑會影響螢光量子效率,但彼此大小倾向不變,其大小為Φf(γ)>Φf(β)>Φf(α),其中數值均不大約在10-2~10-4之間,且溶劑中的氧對其光化學與光物理並無多大影響。

  28. Fig.1、Absorption spectra of colchicine〈1〉 in methanol with different irradiation time Fig.2、 Absorption spectra of thiocolchicine〈5〉 in methanol with different irradiation time charge transfer stabilized by solvent excited singlet state →charge separation state colchicine〈1〉 Fig.4、colchicine 〈1〉in faujasite zeolite supercage. colchicine〈1〉 thiocolchicine〈5〉 solvent Irradiation time β/γ ψ solvent Irradiation time β/γ ψ MeOH 10 minutes 13 1.25×10-6 MeOH 100 minutes 2.2 4.90×10-9 Benzene 10 minutes 6.5 1.15×10-6 Benzene 100 minutes 2.1 6.66×10-8 The Polarity Effect on the Photo-Isomerization of “Tropolone” Moiety in Cholchicine and Thio-Cholchicine Chung-Wen Sun 1, Shun-Chi Chen 2, and Tai-Shan Fang * ‡ 1Bureau of Standard, Metrology and Inspection, M.O.E.A. Taipei, Taiwan, 100, R.O.C 2Department of Chemical Engineering, Mingchi University of Technology , Taipei, Taiwan, 243, R.O.C ‡Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan, 116, R.O.C Abstract The photochemical and photophysical properties of moiety “tropolone” [1] in colchicines 1 and thiocolchicine 5 were studied in benzene and methanol. The low lying(π、π*)excited singlet state is responsible for the photochemistry of colchicines 1 and thiocolchicine 5 based on their UV-Vis absorption spectra、fluorescence emission spectra as well as fluorescence lifetime measurement. In comparison with the disappearance quantum yield (ψ) of compound 1 and compound 5 and the formation ratio of the photoisomerization adducts 2/3 and 6/7 in different polarity solvents by HPLC, results show that the photo-isomerization mechanism of colchine 1 favors the (2+2) electrocyclic concerted cycloaddition, whereas that of thiocolchicine 5 favors the concomitant charge separation of tropolone step-wised slower cycloaddition. Woodward-Hoffmann disrotatory electrocyclic ring closure reaction Conclusion In comparison of the quantum effect (ψ) of compound〈1〉and compound〈5〉 in different polarity solvents, the results of the 3 aspects are obtained as follows : Ⅰ、the disappearance quantum yield of compound〈1〉: ψin methanol ≒ψin benzene. (ψ〈1〉methanol=-1.25×10-6, ψ〈1〉benzene=-1.15×10-6) Ⅱ、the disappearance quantum yield of compound〈5〉: ψin methanol <<ψin benzene. (ψ〈5〉methanol=-4.90×10-9, ψ〈5〉benzene=-6.66×10-8) Ⅲ、the quantum yield of photoadducts β/γ ratio of compound〈1〉>the quantum yield of photoadducts β/γ ratio of compound〈5〉. (in benzene:β/γ〈1〉=6.5, β/γ〈5〉=2.1) (in methanol:β/γ〈1〉=13, β/γ〈5〉=2.2) The results of Ⅰand Ⅲ show that the photochemical mechanism of colchicine〈1〉is not affected by solvent polarity but by the molecular steric selectivity. This infers that the mechanism of colchicine〈1〉 favor Woodward-Hoffmann electrocyclic reaction. The results of Ⅱand Ⅲ show that the photochemical inactivity of thiocolchicine〈5〉is dominated by solvent polarity as well as the mesomeric effect of thiomethoxy group which can stabilize the charge transfer singlet excited state. So it is inferred that the mechanism of thiocolchicine〈5〉favors the concomitant charge separation of the excited singlet state of tropolone chromophore。 Fig.3、 Irradiation of colchicine〈1〉in methanol gives mainly two photoproducts:β-lumicolchicine〈2〉 andγ-lumicolchicine〈3〉 Table 1、The quantum yield and formation ratio (β/γ)of colchicine〈1〉、 thiocolchici〈5〉in different polarity solvent. Reference 1、Abraham Joy, John R. Scheffer, David R. Corbin and V. Ramamurthy, “Enantioselective photoelectrocyclization within zeolites:tropolone methyl ether in chirally modified NaY”,Chem. Commun., 1998,pp1379-1380 2、Laura Bussotti, Maurizio D’Auria, Paolo Foggi, Giordano Lesma, Roberto Righini and Alessandra Silvani,“The Photochemical Behavior of Colchicone and Thiocolchicone”,Photochemistry and Photobiology , 2000,Vol.71(1),pp29-34。 3、Ana L. P. Nery, Frank H. Quina, Paulo F. Moreira, Jr., Carlos E.R.Medeiros, Wilhelm J. Baader, Karina ,“Does the Photochemical Conversion of Colchicine into Lumicolchicines Involve Triplet Transients?A Solvent Dependence Study” ,Photochemistry and Photobiology , 2001,Vol.73(3),pp213-218。 國立臺灣師範大學化學研究所 有機光化學實驗室 C405 方泰山 教授

  29. 誌謝感謝教育部與國科會龐大經費的支助與27個公民營機關團體與企業廠商全方位的贊助; 台灣師範大學核准主持人兩個階段共11個月的研究休假,在科教中心、化學系與C405研究室全體同仁同心協力下,圓滿完成主辦2005第37屆First Class的國際化學奧林匹亞競賽.並繼續接棒主持台灣參加2006-2007第37-38屆國際化學奧林匹亞競賽. 預定民國100年強迫退休. 4 Years to Go!!

More Related