status of the linac2 project
Download
Skip this Video
Download Presentation
Status of the LINAC2 project

Loading in 2 Seconds...

play fullscreen
1 / 48

Status of the LINAC2 project - PowerPoint PPT Presentation


  • 85 Views
  • Uploaded on

Status of the LINAC2 project. Cristina Vaccarezza on behalf of the SPARC-X team. The SPARC-X team.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Status of the LINAC2 project' - arsenio-zamora


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
status of the linac2 project

Status of the LINAC2 project

Cristina Vaccarezza

on behalf of the SPARC-X team

the sparc x team
The SPARC-X team

D.Alesini, S.Bertolucci, M. Bellaveglia, M.E.Biagini, R.Boni, M.Boscolo, M.Castellano, A.Clozza, G.Di Pirro, A.Drago, A.Esposito, M.Ferrario, L.Ficcadenti, D. Filippetto, V.Fusco, A.Gallo, G. Gatti, A.Ghigo, S.Guiducci, M.Migliorati, A.Mostacci, L.Palumbo, L.Pellegrino, M.Preger, C.Sanelli, M.Serio, F.Sgamma, B.Spataro, A.Stella, F.Tazzioli, C.Vaccarezza, M.Vescovi, C.Vicario, INFN-Frascati

F.Alessandria, A.Bacci, F.Broggi, S.Cialdi, C. DeMartinis, D. Giove, C.Maroli, M.Mauri, V.Petrillo, M.Romè, L.Serafini, INFN-Milano

M.Mattioli, P. Musumeci, M. Petracca, INFN-Roma1

L.Catani, E.Chiadroni, A. Cianchi, C. Schaerf, INFN-Roma2

F.Ciocci, G.Dattoli, A.Doria, F.Flora, G.P.Gallerano, L.Giannessi, E.Giovenale, G.Messina, P.L.Ottaviani, G. Parisi, L.Picardi, M.Quattromini, A.Renieri, C. Ronsivalle, ENEA-Frascati

J.B. Rosenzweig, S. Reiche, UCLA , Los Angeles, CA, USA

D. Dowell, P. Krejcik, P. Emma, SLAC, Stanford, CA, USA

outline
Outline
  • LINAC2 project goal
  • SPARXINO proposal & scientific case
  • General layout, Operating scenario
  • Preliminary cost estimate
  • Beam Dynamics & FEL simulation results
  • Summary
project goal

energy upgrade:

1.5 GeV e-- 1 GeV e+

  • 2 GeV option for e-

(X-band acc. sections)

Project Goal
  • High brightness beam injector for SASE and seeded FEL experiments (SPARX project)
  • High Energy

Beam Test Facility

italian initiatives
Italian Initiatives

a) Feb 2001: Call for proposals- 7.5 M€ for R&D

SPARC (CNR-ENEA-INFN-INFM-S.Trieste-U.Roma2)

b) Dec 2001: Call for proposals- 67 M€ for a

X-ray FEL source

1) SPARX (CNR-ENEA-INFN-Univ.Roma2)

2) FERMI (INFM-Sincrotrone Trieste)

from the sparx proposal
From the SPARX proposal:

“X-rays are presently utilized in many research and application fields, for :

High peak brightness and short pulse duration (few femtoseconds) will be the main characteristics of the SPARX source.

By using a 2.5 GeV linear electron accelerator and two magnetic undulators it will be possible to emit radiation at 10 nm and 1.5 nm. Exploitation of 3rd and 5th harmonics will allow emission in the range between 10 and 2 nm for the first beam line and between 1.5 and 0.3 nm for the second beam line.”

  • Atomic, molecular and cluster physics
  • Plasma and warm dense matter
  • Condensed matter physics
  • Material science
  • Femtosecond chemistry
  • Life science
  • Single Biological molecules and clusters
  • Imaging/holography
  • Micro and nano lithography
slide9

The final decision of the Research Ministry was to support two strategic programs:

FERMI

A VUV-FEL user facility at 40-100 nm

SPARX

An R&D program for a X-ray FEL test facility at 3-10 nm

the sparx ino opportunity

I = 2.5 kA

K = 3

se = 0.03 %

en=4

lcr

[nm]

en=1

Energy [GeV]

I = 1 kA

K = 3

se = 0.1 %

en=4

lcr

[nm]

en=1

Energy [GeV]

TheSPARX-ino opportunity
sparx ino proposal
SPARX-ino proposal:
  • upgrade the DAFNE Linac to drive a 3-10 nm SASE-FEL
  • beam energy : 1.2 - 1.5 GeV
  • upgrade the injector to a RF photo-injector (SPARC-like)
  • Study group is preparing a proposal within 2005
brilliance of x ray radiation sources
Brilliance of X-ray radiation sources

12.4

1.24

0.124

l (nm)

FEL Covering from the VUV to

the 1 Å X-ray spectral range:

new Research Frontiers

SPARX

scientific case
Scientificcase
  • “Time resolved X-ray microscopy”, D. Pelliccia, CNR-INFN
  • “Image reconstruction of non periodic nanostructured objects using coherent X-ray diffraction (CXD)” , G. Campi, CNR-IC
  • “Proprietà ottiche del “mezzo vuoto” a corte lunghezze d’onda” G.Cantatore Uni-TS
  • “Low energy X-rays QED tests”, M. MilottiUni-UD
  • and more onRadiation Transport, Diagnostics, Beam Handling, Detectors and Ultrashort Radiation Pulses

FOR MORE INFO...

http://www.lnf.infn.it/conference/sparx05/

objectives

F. Bonfigli et al, SPARX workshop, LNF 9-10 May 2005

…objectives:
  • Input from the workshop:

Wavelength range as close as possible to the water window (~ 2.5 – 4.5 nm)

… and to the carbon window

  • Flexible design:

SASE & Seeded configurations

    • Improve coherence length
    • Short pulses (fs range)
    • Increase wavelength operation range
schematic layout 1 2 gev basic
Schematic layout: 1.2 GeV (basic)

E= .150 GeV

E= .490 GeV

E= 1.2 GeV

SPARC

f= -22°

R56= 26÷32 mm

DL

BC

L0

L1

L2

X-band

X-band

sz~ 210mm

sz~ 50÷90 mm

sd < 1 E-3

the da f ne linac
The DAFNE LINAC

The main LINAC components are the following :

  • Thermionic gun
  • Prebuncher and buncher at f=2.856GHz.
  • High current TW LINAC with output energy  250 MeV
  • Positron converter
  • Capture section
  • Low current e+e- TW LINAC with output energy  510 MeV.
linac2 high energy section

Etot ~ w 4 S-band :

1.5 GeVe-,1GeVe+

Now : Etot ~ 1.2 GeV

Etot ~ w 3 X-band 2 GeV e-

Linac2: High energy section

dogleg start

operating scenario
Operating Scenario

Sparxino @ 1.5 GeV &:

  • e+ 510MeV w damping (+ accumulator)
      • Dafne data taking
      • Dafne high energy w ramping
      • Dafne high luminosity w time sharing
  • e+ 1 GeV
      • BTF experiments
      • on energy in Dafne2 with new injection system
sparxino 1 2 gev s band

Preliminary cost estimation

1/3

SPARXino – 1.2 GeV S-Band

1 new waveguide system (M€ 0.4)

1 X-band station (M€ 1)

1 SPARC clone (M€ 5)

750 MeV

1 magnetic chicane (M€ 0.6)

480 MeV

4 new S-band stations (M€ 2.8)

Estimated cost:

M€ (4.8 + 15% + 5) = 10.5M€ +7M€ (buildings & plants upgrade)

> 1100 MeV

sparxino 1 5 gev s band

Preliminary cost estimation

150

SPARXino – 1.5 GeV S-Band

2/3

1 new waveguide system (M€ 0.5)

1 X-band station (M€ 1)

1 SPARC clone (M€ 5)

750

300

1 compressore (M€ 0.6)

4 new acc. sections (M€ 0.7)

Estimated cost

M€ (7.0 + 15% + 5) = 13 M€ +7M€ (buildings & plants upgrade)

6 new stations (M€ 4.2)

beam dynamics
Beam Dynamics
  • Working point analysis
  • Invariant envelope matching principle
  • Jitter sensitivity and optimization
  • Microbunching instability
beam optics
Beam optics

dogleg

to the undulator

mag. compressor

SPARC

matching

line

old Linac

two possible working points a i pk av 450a w x band at gun exit

Parmela simulation Np=50k

Two possible working points:a) Ipkav 450A w X-band at gun exit

photoinjector

exit

Ipk-av 450A

final beam

Ipk-av 1.1 kA

two possible working points b i pk av 300a wo x band at gun exit
Two possible working points:b) Ipkav 300A wo X-band at gun exit

photoinjector

exit

Ipk-av 300A

final beam

Ipk-av 1.4 kA

slide29

l= 4 nm

l= 5 nm

l= 3 nm

high energy scenario e 1 5 gev
High energy scenario E~1.5 GeV

Sparxino0x

High Energy

l= 3 nm

from elegant with n p 2m from the photoinjector exit up to undulator entrance
from Elegant with Np=2M from the photoinjector exit up to undulator entrance

lf =9 mm, Af= 1 %

no modulation

from elegant with n p 2m from the photoinjector exit up to undulator entrance1
from Elegant with Np=2M from the photoinjector exit up to undulator entrance

lf =15 mm, Af= 30 %

l0 =5 mm, A0= 5 %

in detail
in detail:

lf =15 mm, Af= 30. %

lf =9 mm, Af= 1 %

lf =25 mm, Af= 11 %

about a laser heater
about a laser heater…
  • to increase uncorrelated energy spread

and….

  • Fast (slice length determined by laser pulse length) control on the longitudinal electron phase space
  • Convert energy modulation into density modulation. Enhanced SASE. (Ref. Zholents Phys. Rev. ST Accel. Beams 8, 040701, 2005)
  • Attosecond radiation with a few optical cycle-laser slicing technique (Ref. Zholents and Fawley, PRL 92, 224801, 2004)
  • Short current spike at the bunch tail to study superradiance regime (Ref. Giannessi, Musumeci, Spampinati, Journal of Applied Physics, 98, 043110 (2005))
  • Weak FEL detection with a modulated laser-based beam heater (Ref. Emma et al. PAC 2005)
e beam @ the um
e-beam @ the UM
  • Beam energy 1.2 GeV
  • Flat longitudinal current profile ~ 1kA
  • Pulse Duration ~ 300μm ~ 1 ps
  • Slice energy spread < 2 10-4
  • Slice emittances < 1 mm-mrad
slide43

Resonance condition

1.5 GeV

1.5 kA

1.0 GeV

1.0 kA

SPARC Undulator 2.8 cm period

Reference: Beam Energy 1.2 GeV

Peak Current 1 kA

Slice energy spread < 2 10-4

Slice emittance < 1 mm-mrad

Tuning range 3.5 – 15 nm

Low Energy : 1.0GeV & 1.0kA

High Energy : 1.5GeV & 1.5kA

SPARC Undulator

λUM=2.8 cm – KMAX~ 2.5

Wavelength tuning range - 15 – 4 nm

sase performances simulations made with genesis 1 3 perseo for the high order harmonics

3° harmonic

data

SASE – PerformancesSimulations made with GENESIS 1.3 + Perseo for the high order harmonics

SASE PULSE (4.5nm – 33m)

spectrum

Peak brilliance [Phot./(s mrad2 mm2 0.1% bw)]

0.1% λ

Spectrum

SASE Spectrum @ 4.5 nm – 33m

seeding to increase longitudinal coherence hhg in ar monochromator

λ~ 30 nm

Ef =ηmEi~ 0.6 nJ

Pf~ 3 kW

cδtf~ 60 μm

Ar

λ~ 30 nm

E ~ 0.4 μJ

P ~ 8 MW

δt ~ 50 fs ~ 6 μm

Monochromator

ηm = 0.08 x 0.5 x 0.25 x δti/δtf

UM1

λu= 4.2 cm

K = 3.89

5 UM

48 periods each

λres ~ 30 nm

Seeding to increase longitudinal coherence: HHG in Ar+Monochromator

X 6 (X8)

UM2 (SPARC)

λu= 2.8 cm

K = 1.51

6 UM

77 periods each

λres ~ 5 nm (3.75 nm)

hhg in ar monochromator cont
HHG in Ar + monochromator cont.

5 nm

Energy per pulse ~ 100 μJ

N phot. ~ 2x1012

Coherence length ~45 μm

5 nm

3.75 nm

Energy per pulse ~ 10 μJ

N phot. ~ 1x1011

Coherence length ~30 μm

5 nm

summary
SUMMARY
  • LINAC upgrade layout proposed w a preliminary cost estimate
  • Photoinjector Beam Dynamics studies:
      • 2 stable w.p. considered
      • Jitter sensitivity analysis & optimization
      • Microbunching instability study
  • NEXT:
    • Prototypes realization
    • Tests at SPARC on techniques and systems for SPARXINO
    • Components and installation
ad