第六章  代数结构的概念与性质
This presentation is the property of its rightful owner.
Sponsored Links
1 / 9

第六章 代数结构的概念与性质 PowerPoint PPT Presentation


  • 86 Views
  • Uploaded on
  • Presentation posted in: General

第六章 代数结构的概念与性质. 6.1 代数运算及其性质. 代数运算是代数结构的基本要素之一。代数运算是一种特定的函数,按函数中自变元的个数,代数运算可分为二元运算、三元运算等等。我们主要介绍二元运算。 定义 6.1.1 设 A , B , C 为集合,称函数 为从 A x B 到 C 的一个代数运算,简称代数运算。.

Download Presentation

第六章 代数结构的概念与性质

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


3345812

第六章 代数结构的概念与性质


3345812

6.1 代数运算及其性质

代数运算是代数结构的基本要素之一。代数运算是一种特定的函数,按函数中自变元的个数,代数运算可分为二元运算、三元运算等等。我们主要介绍二元运算。

定义6.1.1设A, B, C为集合,称函数 为从 AxB到 C的一个代数运算,简称代数运算。


3345812

由定义,给定集合 A和 B的元素 a和 b,就可以通过 f 得到集合 C中唯一的元素 c。代数运算 f 能够对 a和 b进行运算,而得到运算结果 c,正是通常数的运算的特征。

通常用◦表示代数运算:f (a, b) = c 记为a◦b = c

例6.1.1定义函 f : Zx(Z-{0}) → Q, (a, b) → a/b,

则 f是从Zx(Z-{0})到Q的一个代数运算。也可

用◦表示为:a ◦b = a/b


3345812

运算表:设有限集合

,代数运算◦可用左下表来说明:

例如,代数结构 (A,◦),其中 A={a, b, c},运算 ◦ 由右上表给出。


3345812

定义6.1.1如果◦是从 AXA到 A的一个代数运算,则称◦是 A上的一个二元运算。

设◦是 A上的一个二元运算,S 是 A的一个子集,若对任意 a, b ∈ S,都有 a◦b ∈ S,则称S 对二元运算◦是封闭的。

例6.1.2自然数N上通常的乘法和加法都是N上的二元运算;而通常的除法及减法不是N上的二元运算。


3345812

下面讨论代数运算满足的规律。

定义6.1.3设◦为A上的二元运算,若对任意a, b ∈A都有 a◦b= b◦a,则称二元运算◦满足交换律;

若对任意a, b, c ∈ A 都有 (a◦b)◦c = a◦(b◦c),则称二元运算◦满足结合律。


3345812

例6.1.3在实数R上通常的加法和乘法都满足交换律和结合律,而减法和除法不满足交换律和结合律;实数 R上全体n阶方阵构成的集合Mn(R)上的方阵的乘法不满足交换律但满足结合律,而加法满足交换律和结合律。

二元运算◦满足结合律可以让我们方便地定义并计

算 a1◦a2◦ ∙ ∙ ∙ ◦an


3345812

设⊗是从 BxA到 A的一个代数运算,⊕是A上的一个代数运算。对于b ∈ B, a1, a2 ∈A, b⊗ (a1⊕a2)和(b⊗a1)⊕(b⊗a2)都是A的元。但是一般来说二者并不一定相等。

定义6.1.5 设a1, a2 ∈A,b ∈ B, 若

b⊗(a1⊕a2)=(b⊗a1)⊕(b⊗a2)

则称代数运算⊗对⊕适合第一分配律, 或左分配律;

同样,若

(a1⊕a2)⊗b = (a1⊗b)⊕(a2⊗b)

则称代数运算⊗对⊕适合第二分配律, 或右分配律.


3345812

例6.1.5(1)数的乘法x对加法+满足左分配律,即对数a, b, c,有 ax(b+c)= axb+axc

(2)设实数上全体阶矩阵构成的集合为 Mmxn(R),则 MmxnxMnxl 到 Mmxl 上矩阵的乘法x对 Mnxl 上矩阵加法的满足分配律。即对 mxn矩阵 A以及 nxl的矩阵B, C,有Ax(B+C)= AxB+ AxC。

(3)设P(S)为集合S的幂集,则集合的交∩,并U及差-运算都是P(S)上的二元运算,且集合的交∩对并U满足分配律,同时并U对交∩也满足分配律


  • Login