Ivan hamr ek supervisor rndr jaroslav anto csc
This presentation is the property of its rightful owner.
Sponsored Links
1 / 30

Ivan Hamráček Supervisor: RNDr. Jaroslav Antoš CSc. PowerPoint PPT Presentation


  • 104 Views
  • Uploaded on
  • Presentation posted in: General

Institute of Experimental Physics Slovak Academy of Sciences, Košice. Spectroscopic Measurements of the Single Bubble Sonoluminescence. Ivan Hamráček Supervisor: RNDr. Jaroslav Antoš CSc. Doctoral Seminar IEP, SAS, Košice 2011. [email protected] Sonoluminescence.

Download Presentation

Ivan Hamráček Supervisor: RNDr. Jaroslav Antoš CSc.

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Ivan hamr ek supervisor rndr jaroslav anto csc

Institute of Experimental Physics

Slovak Academy of Sciences, Košice

SpectroscopicMeasurementsofthe

Single BubbleSonoluminescence

Ivan Hamráček

Supervisor: RNDr. Jaroslav Antoš CSc.

Doctoral Seminar IEP, SAS, Košice 2011

[email protected]


Ivan hamr ek supervisor rndr jaroslav anto csc

Sonoluminescence

light emitting from the gaseous

bubbles in the liquid excited by

the acoustic pressure field

temperature in bubble

(~ 10.000 K )

light flash duration

(~100 ps)

SBSL in water; I. Hamracek; April 2006

SBSL light production mechanism still unknown

MBSL

Ivan Hamracek, Doctoral Seminar IEP SAS 2011


Ivan hamr ek supervisor rndr jaroslav anto csc

Single Bubble Sonoluminescence (SBSL)

one gaseous bubble trapped in the center

of the flask exposed to ultrasound

concentration of the energy of acoustic

vibrations by a factor of 1012

106 photons (2-6eV) per one flash

Ivan Hamracek, Doctoral Seminar IEP SAS 2011


Ivan hamr ek supervisor rndr jaroslav anto csc

50

1

40

30

acoustic amplitude [ATM]

0

radius [μm]

20

vR ~ 4M

10

-1

0

time [μs]

0

10

20

30

R0 ~ 0,5 m

R0 ~ 5 m

SBSL Cycle

RMAX ~ 50 m

Mie scattering

t~ 60 - 250 ps

TCSPC

  • bubble expansion and implosion

  • volume shift by factor 106

  • slow isothermal expansion

  • fast adiabatic colaps

  • shock wave

  • high pressure and temperature

  • flash

  • periodic intervals

  • 106 photons

T ~ 104 - 108 K !

spectrum

Ivan Hamracek, Doctoral Seminar IEP SAS 2011


Ivan hamr ek supervisor rndr jaroslav anto csc

Stable SBSL ConditionPreparation

  • SL laboratory formation

  • experimental apparatus for SBSL creation

  • technology of proper conditions for stable SBSL

  • automation of SBSL creation

Ivan Hamracek, Doctoral Seminar IEP SAS 2011


Ivan hamr ek supervisor rndr jaroslav anto csc

Temperature Estimation: SBSL Spectrum

  • continuous in 190nm – 700nm region

  • UV sector absorbed by water

  • light production mechanism still unknown

  • very low intensity

  • wavelength calibration

  • absolute spectral response calibration

  • calibration verification

  • medium absorbance analysis

  • suitable optical apparatus

  • OceanOptics USB4000 Spectrometer

  • detector range 200 – 900 nm

  • 3648-element Toshiba linear CCD array

  • integration time 3.8 ms – 10 s

USB4000 Spectrometer

QE65000-FL

Spectrometer

Uncalibrated deformed SBSL Spectrum 200-900nm, 7s/20average/10box, 2007

Ivan Hamracek, Doctoral Seminar IEP SAS 2011


Ivan hamr ek supervisor rndr jaroslav anto csc

SBSL Spectrum

Wavelength Calibration

  • wavelength drift slightly with time

  • OceanOptics HG-1 Mercury Argon Calibration Source

  • spectrum calibration included with every measurement

  • automatization needed

  • study of external effects on w.c. (spec. board temperature, integration time, averaging, source runtime)

  • automatized calibration in LabView (HG-1 spectrum and spectrum parameters loaded, line identification, calibration recommendation, archiving data)

HG-1 Mercury Argon Calibration Source

Ivan Hamracek, Doctoral Seminar IEP SAS 2011


Ivan hamr ek supervisor rndr jaroslav anto csc

SBSL Spectrum

Absolute Spectral Response Calibration

  • corrections:

  • size of light emitting surface

  • time integration (pulses)

  • emissivity (temperature and wavelength dependent)

  • transmittance (water, flask glass, lens)

  • geometric (water, flask, lens, light source distance)

  • keep a check on:

  • conditions (temperature, humidity, atmospheric pressure)

  • light distortions (light dispersion, reflection, refraction)

  • mechanical distortions (fiber)

  • aberrations (chromatic, defocus, spherical, astigmatism, coma, Petzval field curvature)

LS-1-CAL Radiometric Calibration Standard

other corrections

USB4000 Spectrometer

Ivan Hamracek, Doctoral Seminar IEP SAS 2011


Ivan hamr ek supervisor rndr jaroslav anto csc

SBSL Spectrum

Calibration Verification

  • thermalsources (Tungsten&Nichromefilament, Sun, stars, hotplate)

  • Planck’s&Stefan-Boltzmann & Wien’s law

  • other (LED)

    • automated Tungsten & Nichrome filament

    • temperature estimator (LabView)

    • (I,U,P,T controlling and recording)

    • systematically undervaluedtemperatures

    • automated software for Planck fit

    • (raw spectra, calibration, spectral power,

    • spectral radiance, number of photons, corrections

    • (transmittances, emissivity))

Ivan Hamracek, Doctoral Seminar IEP SAS 2011


Ivan hamr ek supervisor rndr jaroslav anto csc

SBSL Spectrum

Calibration Verification

  • Sun spectra measurements

  • airmass(coordinate, time, zenith angle)

    • wavelength dependent correction

    • (atmosphere purity(clouds, dust, smog...),

    • spectra measurements procedure

    • (acceptanceangle, spectrometeroverheat)…)

    • LEDs

    • reproducibility, corrections, distortions,

    • spectra, radial distributions, dissipated

    • power,

Neckel H. a Labs D. TheSolarRadiationBetween 3300 and 12500 A; SolarPhysics, 1984, 90, 205-258

Ivan Hamracek, Doctoral Seminar IEP SAS 2011


Ivan hamr ek supervisor rndr jaroslav anto csc

SBSL Spectrum

Preliminary Results

Sonoluminescence spectrum, T = 10.400 K

f = 26.698 kHz; A = 7,4 V;

integration time = 10 s; averaging = 10; boxcar width =50

dissolved oxygen = 3,2 mg/l

T = 21°C; pa = 1015 mbar

  • included:

  • calibration function, integration time,

  • light collection solid angle

  • not included:

  • water, glass and optics absorption

  • optics geometry

raw spectra

Ivan Hamracek, Doctoral Seminar IEP SAS 2011


Ivan hamr ek supervisor rndr jaroslav anto csc

Conclusion

  • conditionsforstableSBSLobservations

    • experimentalapparatusfor SBSL creation – done

    • technologyofproperconditionsforstable SBSL (evenhours) - done

  • SBSL temperatureestimation

    • observationofraw SL spectra - done

    • automatedwavelengthcalibration - done

    • absolutespectralresponsecalibration – in progress

    • calibration verification – in progress

    • distortions & corrections analysis – in progress

    • preliminarytemperatureestimation – done

    • suitableapproachfor UV detection(wavelengthshifter, closer to bubble…)

    • newspectrometer (QE65000)

    • possibilityoftemperatureregulations – to do

Ivan Hamracek, Doctoral Seminar IEP SAS 2011


Ivan hamr ek supervisor rndr jaroslav anto csc

Conclusion

  • estimationofflashduration

    • confirmation of one lightflash per oneacousticcycle - done

    • confirmationofflashdurationbeingofcoupleorderslowerthanacousticcycle (PMT) - done

    • flashregistratedwith MPPC - single photons registered – done

  • diameter measurements

    • Mie Scattering – qualitative agreement with dynamics theory – done

    • slow diameter increasing, fast collapse, afterpulses observed – done

  • corelationsbetweenparameters(pressureamplitude, temperature,

  • intensity, flashduration) – to do

  • required experimental apparatus for dissertation aims completion already obtained – done

Ivan Hamracek, Doctoral Seminar IEP SAS 2011


Ivan hamr ek supervisor rndr jaroslav anto csc

Thank you for your attention!

Ivan Hamracek, Doctoral Seminar IEP SAS 2011


Ivan hamr ek supervisor rndr jaroslav anto csc

BackupSlides

Ivan Hamracek, Doctoral Seminar IEP SAS 2011


Ivan hamr ek supervisor rndr jaroslav anto csc

E3649A Dual Output Power Supply

E3647A Dual Output Power Supply

PicoScope 3424

935 Quad

200MHz CFD

VME-V1290N 16

ChannelMultihit TDC

HI 9142 Dissolved

Oxygen Meter

34410A 6½ DigitMultimeter

33220A FunctionGenerator

DT-MINI-2-GS

LightSource

LS-1-CAL RadiometricCalibration Standard

CUV-UV CuvetteHolder

C10751-03 MPPC

SPMMiniHigh

Gain APD

FVA-UV Attenuator

HG-1 MercuryArgonCalibrationSource

USB4000 Spectrometer

QE65000-FL

Spectrometer

Sony EVI-D100P

Longpass& Shortpass

filters

9306 1-GHz Preamplifier

Ivan Hamracek, Doctoral Seminar IEP SAS 2011


Ivan hamr ek supervisor rndr jaroslav anto csc

MieScattering

  • the light scattered within a given angle is proportional to the square of the

  • radius of the bubble

  • signal from the PMT is proportional to the intensity of the scattered light

  • 565 nm laser (red)

  • no calibration for PMT signal to radius nor for excitation signal amplitude to

  • acoustic pressure field amplitude yet

  • proportional parameters: good qualitative agreement with Rayleigh-Plesset

  • equation and published experimental results

light pulses observed

excitation signal amplitude [V]

light pulses

not observed

Ivan Hamracek, Doctoral Seminar IEP SAS 2011


Ivan hamr ek supervisor rndr jaroslav anto csc

MieScattering

Ivan Hamracek, Doctoral Seminar IEP SAS 2011


Ivan hamr ek supervisor rndr jaroslav anto csc

t0

Bjerknes force – time average

t0+T/2

BubbleLevitation in Liquid

p(t)=p0sin(ωt)

acoustic pressure

p(x,t)

p(t)=0

X position

Ivan Hamracek, Doctoral Seminar IEP SAS 2011


Ivan hamr ek supervisor rndr jaroslav anto csc

Rayleigh – PlessetEquation

qualitative bubble dynamics description

R – bubble radius

pH – hydrostatic pressure

pA – acoustic amplitude

σ – surface tension

μ – liquid viscosity

  • Assumptions

  • - liquid

  • incompressibility

  • - slowradiusshift

Ivan Hamracek, Doctoral Seminar IEP SAS 2011


Ivan hamr ek supervisor rndr jaroslav anto csc

relative intensity

of light emitted

SBSL

SL intensity

no SBSL

50

40

radius [μm]

30

20

10

1

0,1

10

100

1,3

0

% inert gas in N2

10

1,2

20

acoustic

amplitude [ATM]

30

1,1

time [μs]

40

1,0

50

S. Putterman; February 1995

ParametersAffecting on SBSL

Weninger et al.; May 1995

Hiller et al.; 1992

  • liquid used

  • bubble gas used

  • acoustic amplitude

  • ambient temperature

  • others?

M.P. Brenner; April 2002

Ivan Hamracek, Doctoral Seminar IEP SAS 2011


Ivan hamr ek supervisor rndr jaroslav anto csc

flask

SBSL Apparatus

function generator

amplifier

  • requirements

~

  • signal generated and amplified with frequency of ~ 27 kHz

L

  • transformed by piezoceramic transducers to US standing wave

1MΩ

  • parameters monitored

  • function generator output voltage

camera

pmt

  • LC circuit current

10kΩ

  • sound captured with microphone at the bottom of the flask

USB

4000

  • flash captured with photomultiplier

  • apparatus scene captured with camera

osciloscope

pc

  • spectrum scanned USB 4000

Ivan Hamracek, Doctoral Seminar IEP SAS 2011


Ivan hamr ek supervisor rndr jaroslav anto csc

SBSL Apparatus

Ivan Hamracek, Doctoral Seminar IEP SAS 2011


Ivan hamr ek supervisor rndr jaroslav anto csc

SBSL Creation and Observation

  • liquidpreparation

  • 5-10 foldcut-downofgascontent in destilatedwater

  • 115 ml, liquid surface in flask neck for spherical liquid shape

  • signal generated

  • 26,69 kHz, 3-5 Vpp

  • bubble creation

  • liquid surface undulation(miniature

  • bubble creation)

  • sonoluminescence observation

SBSL in water on osciloscopeLeCroy; I. Hamráček; April 2006

  • microphone output signal folds

  • light pulses captured with PMT

Ivan Hamracek, DoctoralSeminar IEP SAS 2011


Ivan hamr ek supervisor rndr jaroslav anto csc

SBSL Observation

Ivan Hamracek, DoctoralSeminar IEP SAS 2011


Ivan hamr ek supervisor rndr jaroslav anto csc

exposition [s]:

3,2

10

6

5

2

1

0,5

50

400

100

400

400

400

400

ISO:

1mm

50μm

focal distance 11mm, F/3.2

r ~ 50m

Hamráček; April 2006;

Olympus C750

dig. zoom 15x

0.3mm


Ivan hamr ek supervisor rndr jaroslav anto csc

exposition [s]:

3,2

10

6

5

2

1

0,5

50

400

100

400

400

400

400

ISO:

1mm

50μm

focal distance 11mm, F/3.2

r ~ 50m

Hamráček; April 2006;

Olympus C750

dig. zoom 15x

0.3mm


Ivan hamr ek supervisor rndr jaroslav anto csc

Light Flash Duration

Photon Counting

  • Photon Counting

    • low-light-level measurements (luminescence, fluorescence)

      • incident photons are detected as separate pulses

      • average time intervals between signal pulses are wider than the time resolution of PMT

    • signal stability, detection effeciency, signal-to-noise ratio

    • <100 ps time resolution

    • 2 fast detectors - time difference of

    • signal registration distribution

    • PMT – MPPC, CFD – constant fraction discriminator , TAC – time to amplitude converter,

    • MCA – multichannel analyzer

U(Δt)

start

CFD

TAC

MCA

PMT

Light source

CFD

PMT

stop


Ivan hamr ek supervisor rndr jaroslav anto csc

Light Flash Duration

Silicon Photomultiplier (SiPM)

  • novel type semiconducting photon sensor

  • built from an avalanche photodiode (APD) array on common Si substrate

  • sensitive size 1x1 mm2

  • great photon dtection ability

  • excellent cost performance

  • very compact size

SPMMini PMT

Ivan Hamracek, Written part of the dissertation examination


Ivan hamr ek supervisor rndr jaroslav anto csc

Ivan Hamracek, DoctoralSeminar IEP SAS 2011


  • Login