1 / 16

Thermochemistry

Chapter Six. Thermochemistry. Energy. Energy is the capacity to do work (to displace or move matter). Energy literally means “work within”; however, an object does not contain work. Potential energy is energy of position or composition. Kinetic energy is the energy of motion.

arch
Download Presentation

Thermochemistry

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter Six Thermochemistry

  2. Energy • Energyis the capacity to do work (to displace or move matter). • Energy literally means “work within”; however, an object does not contain work. • Potential energy is energy of position or composition. • Kinetic energy is the energy of motion. Ek = ½ mv2 Energy has the units of joules (J or kg . m2/s2)

  3. Potential Energy and Kinetic Energy At what point in each bounce is the potential energy of the ball at a maximum?

  4. Thermochemistry: Basic Terms • Thermochemistry is the study of energy changes that occur during chemical reactions. • System: the part of the universe being studied. • Surroundings: the rest of the universe.

  5. Types of Systems • Open: energy and matter can be exchanged with the surroundings. • Closed: energy can be exchanged with the surroundings, matter cannot. • Isolated: neither energy nor matter can be exchanged with the surroundings. After the lid of the jar is unscrewed, which kind of system is it? A closed system; energy (not matter) can be exchanged.

  6. Internal Energy (U) • Internal energy (U) is the total energy contained within a system • Part of U is kinetic energy (from molecular motion) • Translational motion, rotational motion, vibrational motion. • Collectively, these are sometimes called thermal energy • Part of U is potential energy • Intermolecular and intramolecular forces of attraction, locations of atoms and of bonds. • Collectively these are sometimes called chemical energy

  7. Heat (q) • Technically speaking, heat is not“energy.” • Heat is energy transfer between a system and its surroundings, caused by a temperature difference. More energetic molecules … … transfer energy to less energetic molecules. • Thermal equilibrium occurs when the system and surroundings reach the same temperature and heat transfer stops. How do the root-mean-square speeds of the Ar atoms and the N2 molecules compare at the point of thermal equilibrium?

  8. Work (w) • Like heat, work is an energy transfer between a system and its surroundings. • Unlike heat, work is caused by a force moving through a distance (heat is caused by a temperature difference). • A negative quantity of work signifies that the system loses energy. • A positive quantity of work signifies that the system gains energy. • There is no such thing as “negative energy” nor “positive energy”; the sign of work (or heat) signifies the direction of energy flow.

  9. Pressure-Volume Work For now we will consider only pressure-volume work. work (w) = –PDV How would the magnitude of DV compare to the original gas volume if the two weights (initial and final) were identical?

  10. State Functions • Thestate of a system: its exact condition at a fixed instant. • State is determined by the kinds and amounts of matter present, the structure of this matter at the molecular level, and the prevailing pressure and temperature. • A state function is a property that has a unique value that depends only the present state of a system, and does not depend on how the state was reached (does not depend on the history of the system). • Law of Conservation of Energy – in a physical or chemical change, energy can be exchanged between a system and its surroundings, but no energy can be created or destroyed.

  11. First Law of Thermodynamics • “Energy cannot be created or destroyed.” • Inference: the internal energy change of a system is simply the difference between its final and initial states: DU = Ufinal – Uinitial • Additional inference: if energy change occurs only as heat (q) and/or work (w), then: DU = q + w

  12. First Law: Sign Convention • Energy entering a system carries a positive sign: • heat absorbed by the system, or • work done on the system • Energy leaving a system carries a negative sign • heat given off by the system • work done by the system

  13. Example 6.1 A gas does 135 J of work while expanding, and at the same time it absorbs 156 J of heat. What is the change in internal energy? Example 6.2: A Conceptual Example The internal energy of a fixed quantity of an ideal gas depends only on its temperature. If a sample of an ideal gas is allowed to expand against a constant pressure at a constant temperature, (a) what is DUfor the gas? (b) Does the gas do work? (c) Is any heat exchanged with the surroundings?

  14. Heats of Reaction (qrxn) • qrxnis the quantity of heat exchanged between a reaction system and its surroundings. • An exothermic reaction gives off heat • In an isolated system, the temperature increases. • The system goes from higher to lower energy; qrxn is negative. • An endothermicreaction absorbs heat • In an isolated system, the temperature decreases. • The system goes from lower to higher energy; qrxn is positive.

  15. Conceptualizing an Exothermic Reaction Surroundings are at 25 °C Typical situation: some heat is released to the surroundings, some heat is absorbed by the solution. 35.4 °C 32.2 °C 25 °C In an isolated system, all heat is absorbed by the solution. Maximum temperature rise. Hypothetical situation: all heat is instantly released to the surroundings. Heat = qrxn

  16. Internal Energy Change at Constant Volume • For a system where the reaction is carried out at constant volume, DV = 0 and DU = qV. • All the thermal energy produced by conversion from chemical energy is released as heat; no P-V work is done.

More Related