1 / 29

Equilibrio in fase liquida

Equilibrio in fase liquida. ACIDI E BASI. Definizione di Arrhenius. Le sostanze che dissociandosi in acqua dando ioni idrogeno sono acide Le sostanze che dissociandosi in acqua danno ioni idrossido sono basiche. H 2 O. HCl H + + Cl -. H 2 O. NaOH Na + + OH -.

ansel
Download Presentation

Equilibrio in fase liquida

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Equilibrio in fase liquida ACIDI E BASI

  2. Definizione di Arrhenius Le sostanze che dissociandosi in acqua dando ioni idrogeno sono acide Le sostanze che dissociandosi in acqua danno ioni idrossido sono basiche H2O HCl H+ + Cl- H2O NaOH Na+ + OH- Neutralizzazione di un acido con una base H2O H+ +OH- Ma questa teoria limita l’esistenza di acidi e basi alla presenza di acqua e limita il numero delle sostanze che si comportano da acidi o da basi a quelle che possiedono atomi di idrogeno o gruppi OH.

  3. Definizione di Brönsted-Lowry Un ACIDO è una qualunque sostanza che è capace di donare uno ione idrogeno (protone) ad un altra sostanza in una reazione chimica. Una BASE è una sostanza che accetta lo ione idrogeno (protone) dall'acido. Tale definizione non è legata al tipo di solvente e neppure alla presenza stessa di un solvente, devono però sempre esistere protoni da scambiare HCl + H2O Cl- + H3O+ NO3- + H3O+ HNO3 + H2O NH3+ H2O OH- + NH4+

  4. Definizione di Brönsted-Lowry La definizione di acido o base non è vincolata alla presenza del solvente HCl(gas) + NH3(gas) NH4Cl(solido) in assenza di solvente

  5. Definizione di Brönsted-Lowry Acidi e basi esistono sempre in coppia. In soluzione acquosa H2O si puo’ comportare come acido oppure come base HCl + H2O Cl- + H3O+ Accetta un H+ NH3+ H2O OH- + NH4+ Dona un H+

  6. Meccanismo molecolare di una reazione acido-base Rottura del legame covalente fra H e un non metallo con formazione di uno ione H+ che si lega alla base attraverso una coppia di non legame della base stessa.

  7. Concetti importanti Una reazione acido-base in soluzione è sempre un equilibrio chimico Un acido agisce come tale solo se è in presenza di una base e viceversa Dalla reazione fra un acido e una base si formano due specie che hanno proprietà l’una di una base e l’altra di un acido, quindi per ogni acido è possibile definire una base coniugata e viceversa

  8. Equilibrio acido-base Ogni reazione acido-base deve essere scritta come un equilibrio Base 1 + Acido 2 Acido 1 + Base 2 Cl- + H3O+ HCl + H2O Base coniugata di HCl Acido coniugato di H2O Quindi le coppie HCl/Cl- e H2O/H3O+ sono dette coppie coniugate acido-base

  9. Kw = [ H3O+ ] [OH- ]= 1,0 x 10-14 Alcune sostanze pure danno reazioni di trasferimento del protone da una molecola all’altra: Autoprotolisi di H2O H2O H+ + OH- [ H+ ] [OH- ] Keq = = 1,0 x 10-14 a 25°C [ H2O ] [ H2O ]= 1 M Altri es. 2CH3COOH CH3COO- + CH3COOH2+ 2NH3 NH4+ + NH2- 2H2SO4  HSO4- + H3SO4+

  10. Un chiarimento.. H2O H+ + OH- [ H+ ]= [ H3O+ ] [ ] O + 2H2O H3O+ + OH- H H In realtà H3O+ non è la sola specie che si ottiene per protonazione dell’acqua, ma si formano altre specie come H9O4+, H11O5+ H

  11. Soluzioni acide o basiche Kw = [ H+ ] [OH- ]= 10-14 H2O H+ + OH- [ H+ ] [OH- ] 10-7 10-7

  12. Soluzioni acide o basiche Kw = [ H+ ] [OH- ]= 10-14 H2O H+ + OH- [ H+ ] [OH- ] 10-7 10-7 [ H+ ] [OH- ] 10-6 10-8 [ H+ ] [OH- ] 10-5 10-9 [ H+ ] [OH- ] 10-1 10-13

  13. Soluzioni acide o basiche Kw = [ H+ ] [OH- ]= 10-14 H2O H+ + OH- [ H+ ] [OH- ] 10-13 10-1 [ H+ ] [OH- ] 10-9 10-5 [ H+ ] [OH- ] 10-8 10-6 [ H+ ] [OH- ] 10-7 10-7 [ H+ ] [OH- ] 10-6 10-8 [ H+ ] [OH- ] 10-5 10-9 [ H+ ] [OH- ] 10-1 10-13

  14. Costante di dissociazione acida Ka [ H3O+ ] [A- ] Keq = [ HA ] [ H2O ] [ H3O+ ] [A- ] Ka = [ HA ] HA + H2O H3O+ + A-

  15. Costante di dissociazione acida Ka La costante di dissociazione acida, Ka, è la misura della forza di un acido, ovvero di quanto una reazione di dissociazione acida sia spostata verso destra.

  16. La forza di un acido [ H3O+ ] [A- ] Ka = [ HA ] La forza di un acido è determinata dalla costante di dissociazione acida Tanto maggiore sarà il valore della costante e tanto piu’ l’acido sarà propenso a dissociarsi in soluzione, liberando ioni H3O+ HA + H2O H3O+ + A-

  17. La forza di un acido Quando Ka >>1 La reazione si considera completamente spostata verso destra HCl + H2O H3O+ + Cl- Ovvero la dissociazione è quantitativa Esempio: se ho una soluzione acquosa dove la concentrazione iniziale di HCl= 10-2 M, [H+]= 10-2 M Tutto l’acido si dissocia in H+ e Cl-

  18. Alcuni acidi

  19. Costante di dissociazione basica Kb [ OH- ] [HA ] Kb = [ A- ] A- + H2O OH- + HA [ OH- ] [ HA ] Keq = [ A - ] [ H2O ]

  20. Costante di dissociazione basica Kb Attenzione! La base non è solo un composto che ha a disposizione degli ioni OH- Una base (secondo Broensted-Lowry) è qualsiasi sostanza che puo’ accettare uno ione H+ Es: Cl-, NH3, CN-, CO32- Invece, secondo la def. di Arrehenius, solo i composti che in H2O liberano ioni OH- sono basi Es: NaOH, KOH, Ca(OH)2, Fe(OH)3

  21. Acido e base coniugata [ H3O+ ] [NH3] [ OH- ] [NH4+] [ OH- ] [ H3O+ ] [NH4+] [NH3] =Kw= [ H3O+ ] [ OH- ] Ka Kb = Kb = Ka = [NH4+ ] [NH3] [NH4+ ] [NH3] NH4+ + H2O H3O+ + NH3 NH3 + H2O OH- + NH4+ Tanto più un acido è debole, tanto meno è debole la sua base coniugata

  22. Acido e base coniugata Tanto piu’ un acido è forte, tanto piu’ sarà debole la sua base coniugata HCl Cl- CH3COOH CH3COO- H2CO3 HCO3- HCN CN- NH3 NH4+ OH- = idrossidi ionici, es: NaOH, Ca(OH)2,KOH OH- H2O

  23. Acido e base coniugata Tanto piu’ un acido è forte, tanto piu’ sarà debole la sua base coniugata Acido forte HCl Cl- Base nulla CH3COOH CH3COO- Base debole Acido debole Base debole H2CO3 HCO3- Acido debole HCN Base debole CN- Acido debole NH3 Base debole NH4+ Acido debole NaOH Base forte H2O Acido nullo

  24. Reazione acido-base Per come Ka e Kb sono state definite, i loro valori indicano da che parte è spostato l’equilibrio della reazione con H2O, ma servono anche a trovare la costante di equilibrio di una qualunque reazione acido-base. Per esempio: se acido e base hanno Ka e Kb > 1, la reazione fra loro equivale a : H3O+ + OH- H2O con Keq = Kw-1 = 1 x 1014 Se la reazione è CH3COOH + NH3 CH3COO- + NH4+ Keq = [NH4+] [CH3COO-]/ [CH3COOH] [NH3] = ([NH4+] [OH-]/ [NH3]) ([CH3COO-]/ [CH3COOH] [OH-]) = Kb(NH3) Kb(CH3COO-)-1 = 1.8 x 10-5/ 5.6 x 10-10 =3.2 x 104

  25. Altro esempio: H2S + HSO3- HS- + SO2 +H2O Keq = Kb(HSO3-) x Kb(HS-)-1 = 5.9 x 10-13/ 10-7 = 5.9 x 10-6 Da questi esempi deriva che: 1. Un acido reagisce quantitativamente con qualunque base che sia più forte (Kb più grande) della propria base coniugata. 2. Maggiore è la diferenza tra le due Kb tanto più la reazione è spostata a destra. 3. Se le due Kb sono comparabili all’eq. ci sono quantità paragonabili dei reagenti e dei prodotti 4. In maniera analoga si conclude che una base reagisce con qualunque acido che sia più forte dell’acido coniugato della base.

More Related