optical tweezers
Download
Skip this Video
Download Presentation
Optical Tweezers

Loading in 2 Seconds...

play fullscreen
1 / 26

Optical Tweezers - PowerPoint PPT Presentation


  • 172 Views
  • Uploaded on

Optical Tweezers. rolf. Project Goals. We will calibrate the strength of an optical trap (Optical Tweezer) Optical Tweezers may be used to measure very small forces (femtoNewton, 10 -15 N) Applications include Biophysics. Description.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Optical Tweezers' - anika-berger


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
project goals
Project Goals
  • We will calibrate the strength of an optical trap (Optical Tweezer)
  • Optical Tweezers may be used to measure very small forces (femtoNewton, 10-15N)
  • Applications include Biophysics
description
Description
  • A laser beam is expanded and collimated. This collimated beam is directed through a microscope objective into a flow cell. Spheres with a higher index of refraction than the medium in the cell (water) will be trapped at the focus of the beam.
optical trapping of dielectric spheres
Optical trapping of dielectric spheres
  • Force due to refraction is always toward the focus
dual beam tweezers are nice
Dual-beam Tweezers are nice
  • But we aren’t going to make one.
  • Dual beam instruments are more complicated and difficult to align and have at least twice the equipment investment (2 objectives, 2 lasers, etc.
  • So we are building a single-beam tweezer.
schematic diagram

Laser line mirror

Laser

Beam expander

Cell

White Light Source

CCD

CCD

Objective

Laser line mirror

Color Filter

Tip

Schematic diagram
in the flow cell
In the flow cell
  • We apply a force to the trapped sphere by flowing water through the cell. This force is dependent on radius r, viscosity η, and velocity v of the water.
  • Within the limits of the strength of the trap, the sphere remains trapped, but undergoes a displacement under the influence of this external force just like a mass on a spring.
apply a known force
Apply a known force
  • If a known force is applied, and the displacement is measured, the ‘stiffness’ of the optical trap may be determined.
viscosity velocity
Viscosity, velocity
  • Viscosity is a function of temperature, which we will measure.
  • Velocity of the fluid flow through the cell will be derived by dimensions of the cell, and may also be directly measured by displacement vs. time of spheres traveling through the flow cell with the trap inactive.
velocity as a function of h
Velocity as a function of Δh
  • We will take measurements of flow rate and displacement as a function of time at a range of heights in order to determine v as a function of Δh.
putting it all together
Putting it all together
  • With the data we will collect, we can determine the stiffness of the trap.
  • This determined, we could, in future experiments, determine the tiny forces involved in biological processes. For example, the overstretchng transition of DNA:
overstretching transition of dna
Overstretching transition of DNA
  • http://www.atsweb.neu.edu/mark/opticaltweezersmovies.html
team resources
Team/Resources
  • Our team:
    • People: Rolf Karlstad and Joe Peterson
    • Equipment: 633 nm laser, microscope objective, CCD camera, dichroic mirrors, white light source, optical table and various optical elements
    • Where: Physics 66
    • Advisor: Kurt Wick
    • Cell created in student shop
current status
Current Status
  • High-level overview of progress against schedule
    • On-track !
    • Leak fixing cell
    • Apparatus built, flow cell built, working out minor issues
project goals repeated
Project Goals repeated
  • We will calibrate the strength of an optical trap (Optical Tweezer)
  • Optical Tweezers may be used to measure very small forces (femtoNewton, 10-15N)
references
References
  • K. Dholakia, P. Reece. Optical micromanipulation takes hold. Nano Today, Volume 1, Number 1. February 2006.
  • Mark C. Williams. Optical Tweezers: Measuring Piconewton Forces. Previously published in Biophysics Textbook Online. Available at: http://www.biophysics.org/education/williams.pdf
  • K. Dholakia, G. Spalding, M. MacDonald. Optical tweezers: the next generation. Physics World, October 2002.
  • B. Tuominen, R .Hoglund. Optical Tweezers. May 2005. At the time of writing available at the MXP website: http://mxp.physics.umn.edu/s05/Projects/S05Tweezer/
  • Kurt Wick. University of Minnesota. Minneapolis, MN. February 2006. Private Conversation.
  • Handbook of Chemistry and Physics, 80th edition. CRC Press, Florida. Pg 6-3. 1999.
  • Mark C. Williams. Northeastern University, Boston, MA. January 2006. Private correspondence.
ad