mini black holes and extra dimensions
Download
Skip this Video
Download Presentation
Mini Black Holes and extra-dimensions

Loading in 2 Seconds...

play fullscreen
1 / 38

Micro Black Holes beyond Einstein - PowerPoint PPT Presentation


  • 528 Views
  • Uploaded on

Mini Black Holes and extra-dimensions. Aurélien BARRAU & Julien GRAIN. Black Holes evaporate. Radiation spectrum Hawking evaporation law. Small black holes in astrophysics : PBHs . PBH could have formed in the early universe. Standard mass spectrum in the early universe

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Micro Black Holes beyond Einstein' - andrew


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
mini black holes and extra dimensions
Mini Black Holes and extra-dimensions

Aurélien BARRAU & Julien GRAIN

black holes evaporate
Black Holes evaporate
  • Radiation spectrum
  • Hawking evaporation law

J. Grain, A. Barrau, LPSC-Grenoble

small black holes in astrophysics pbhs
Small black holes in astrophysics : PBHs

J. Grain, A. Barrau, LPSC-Grenoble

pbh could have formed in the early universe
PBH could have formed in the early universe
  • Standard mass spectrum in the early universe
  • Softening of the equation of state (Canuto , Khlopov)
  • Quasi-critical phenomenon (Choptuik)
  • Double inflation (Khlopov)
  • Phase transition (Hawking , Steinhardt , Khlopov)

J. Grain, A. Barrau, LPSC-Grenoble

direct antiprotons emission
Direct antiprotons emission
  • Individual emission
  • Convoluted with the mass spectrum today

Initial spectrum

J. Grain, A. Barrau, LPSC-Grenoble

source flux
Source flux

(1)

(2)

(3)

FLUX

(4)

main contribution from :

antiprotons kinetic energy (GeV)

No influence of the details of the formation mechanism

J. Grain, A. Barrau, LPSC-Grenoble

let antiprotons propagate in the milky way
Let antiprotons propagate in the Milky Way

Diffusive halo with convection and nuclear reactions

Galactic disc where sources are located

Drawing by D. Maurin

Maurin, Taillet, Donato, Salati, Barrau, Boudoul, review article for

“Research Signapost” (2002) [astro-ph/0212111]

J. Grain, A. Barrau, LPSC-Grenoble

primary and secondary antiprotons
Primary and secondary antiprotons
  • Solve a diffusion equation for PBHs antiprotons AND secondary antiprotons coming from nuclear reaction on the ISM:
  • And taking into account the diffusion in energy (tertiary contribution)

p-p interaction

p-He interaction

He-p interaction

He-He interaction

J. Grain, A. Barrau, LPSC-Grenoble

toa fluxes and upper limit on pbh density
TOA fluxes and upper limit on PBH density

Experimental data points

Secondary antiprotons flux : “standard” physics only

PBH antiprotons flux for different values of PBH’s density

F.Donato, D. Maurin, P. Salati, A. Barrau, G. Boudoul, R.Taillet

Astrophy. J. (2001) 536, 172

A. Barrau, G. Boudoul et al.,

Astronom. Astrophys., 388, 767 (2002)

J. Grain, A. Barrau, LPSC-Grenoble

another probe gamma rays
Another probe : gamma rays
  • Data
  • EGRET flux at 100 MeV
  • “Gamma rays noise”
  • (Pavlidou & Fields, ApJ 575, L5-8 (2002)):
  • - galaxies
  • - quasars

PBH emission (direct + neutral pions decay), with an integration over redshift :

+

PBH < 3.310 –9

A. Barrau & G. Boudoul, ICRC 2003 proc., [astro-ph/0304528]

J. Grain, A. Barrau, LPSC-Grenoble

slide11

Cosmological consequences

Unlike the CMB or the large scale structures, PBH give informations on small scale

PRIMORDIAL BLACK HOLES ARE A UNIQUE COSMOLOGICAL PROBE

J. Grain, A. Barrau, LPSC-Grenoble

cosmological constrain pbh fraction
Cosmological constrain:PBH fraction β

PBHs are the only way to constrain small scales in the primordial power spectrum

Hypothesis: bump in the mass variance

( Starobinsky , Polarski )

Antiprotons constrains

Barrau, Blais, Boudoul, Polarski,

Phys. Lett. B, 551, 218 (2003)

J. Grain, A. Barrau, LPSC-Grenoble

particle physics beyond the standard model with black holes
Particle physics beyond the standard model with black holes ?
  • To avoid entropy overproduction, an upper limit on Trh is obtainted with gravitinos
  • If cosmic-rays from PBHs are detected, it leads to an upper limit on the Hubble mass at reheating so it leads to a lower limit on Trh
  • Combining both lead to constrains on the gravitino mass

Lower limit on the gravitino

mass as a function of the PBH

induced cosmic rays flux

A. Barrau & N. Ponthieu

Phys. Rev. D 69, 085010 (2004) , hep-ph/0402187

J. Grain, A. Barrau, LPSC-Grenoble

perspectives
PERSPECTIVES

Gravitinos emission from PBHs

  • n<1.18 : the most stringent limit at small scale
  • Positive running excluded

M. Khlopov, A. Barrau, astro-ph/0406621

J. Grain, A. Barrau, LPSC-Grenoble

detection of pbh antideuterons
Detection of PBH:Antideuterons
  • Future experiment like AMS will measure the antideuteron flux
  • Improvement ~ factor 10 in sensitivity

evaporation

Window for detection

New physics

Secondary anti(D)

A. Barrau, S. Alexeyev, et al. Class. Quantum Grav. 19 (2002) 4431

A. Barrau, G. Boudoul, et al. Astronom. Astrophys. 398, 403 (2003)

J. Grain, A. Barrau, LPSC-Grenoble

mini black holes at the lhc a delight for new physics
A. Barrau, J. Grain & S. Alexeev

Phys. Lett. B 584, 114-122 (2004)

Mini Black holes at the LHC :a delight for new physics !

J. Grain, A. Barrau, LPSC-Grenoble

black holes at the lhc

Arkani-Hamed, Dimopoulos, Dvali Phys. Lett. B 429, 257 (1998)

Black Holes at the LHC ?

Hierarchy problem in standard physics:

One of the solutions:

Large extra dimensions

J. Grain, A. Barrau, LPSC-Grenoble

black holes creation
Black Holes Creation
  • Two partons with a center-of-mass energy moving in opposite direction
  • A black hole of mass and horizon radius is formed if the impact parameter is lower than

From Giddings & al. (2002)

J. Grain, A. Barrau, LPSC-Grenoble

precursor works
Precursor Works

Giddings, Thomas Phys. Rev. D 65, 056010 (2002)

Dimopoulos, Landsberg Phys. Rev. Lett 87, 161602 (2001)

  • Computation of the black hole’s formation cross-section
  • Derivation of the number of black holes produced at the LHC
  • Determination of the dimensionnality of space using Hawking’s law

J. Grain, A. Barrau, LPSC-Grenoble

From Dimopoulos & al. 2001

interesting idea using mini black holes a resonances
Interesting idea : using mini black holes a resonances
  • Search for SUSY particles
  • Search for light Higgs

Sigma ~ 1 TeV ^-2 ~ 400 pbarn !

J. Grain, A. Barrau, LPSC-Grenoble

From Dimopoulos & al. 2001

gauss bonnet black holes
Gauss-Bonnet Black Holes?
  • All previous works have used D-dimensionnal Schwarzschild black holes
  • General Relativity:
  • Low energy limit of String Theory:

A. Barrau, J. Grain & S. Alexeev

Phys. Lett. B 584, 114-122 (2004)

J. Grain, A. Barrau, LPSC-Grenoble

gauss bonnet black holes thermodynamic 1
Gauss-Bonnet Black Holes’ Thermodynamic (1)

Properties derived by:

Boulware, Deser Phys. Rev. Lett. 83, 3370 (1985)

Cai Phys. Rev. D 65, 084014 (2002)

Expressed in function of the horizon radius

J. Grain, A. Barrau, LPSC-Grenoble

gauss bonnet black holes thermodynamic 2
Gauss-Bonnet Black holes’ Thermodynamic (2)

Non-monotonic behaviour

taking full benefit of evaporation process

(integration over black hole’s lifetime)

J. Grain, A. Barrau, LPSC-Grenoble

the flux computation
The flux Computation
  • Analytical results in the high energy limit

The grey-body factors are constant

  • is the most convenient variable

Harris, Kanti JHEP 010, 14 (2003)

J. Grain, A. Barrau, LPSC-Grenoble

the flux computation atlas detection
The Flux Computation (ATLAS detection)
  • Planck scale = 1TeV
  • Number of Black Holes produced at the LHC derived by Landsberg
  • Hard electrons, positrons and photons sign the Black Hole decay spectrum
  • ATLAS resolution

J. Grain, A. Barrau, LPSC-Grenoble

the results measurement procedure
The Results -measurement procedure-
  • For different input values of (D,), particles emitted by the full evaporation process are generated

spectra are reconstructed for each mass bin

  • A analysis is performed

J. Grain, A. Barrau, LPSC-Grenoble

the results discussion
The Results-discussion-
  • For a planck scale of order a TeV, ATLAS can distinguish between the case with and the case without Gauss-Bonnet term.

Important progress in the construction of a full quantum theory of gravity

  • The results can be refined by taking into account more carefully the endpoint of Hawking evaporation

Barrau, Grain & Alexeyev

Phys. Lett. B 584, 114 (2004)

+ Dark matter candidate

Barrau et al., Ann. Phys. (2004)

J. Grain, A. Barrau, LPSC-Grenoble

let s add a cosmological constant
Let’s add a cosmological constant

J. Grain, A. Barrau, LPSC-Grenoble

a ds universe
Positive cosmological constant

Presence of an event horizon at

Negative cosmological constant

Presence of closed geodesics

(A)dS Universe

Cosmological constant

De Sitter (dS) Universe

Anti-De Sitter (AdS) Universe

J. Grain, A. Barrau, LPSC-Grenoble

black holes in such a space time
Two event horizons and

No solution for with

One event horizon

Exist only for with

Black Holes in such a space-time

Metric function h(r)

De Sitter (dS) Universe

Anti-De Sitter (AdS) Universe

J. Grain, A. Barrau, LPSC-Grenoble

calculation of greybody factors 1
Calculation of Greybody factors (1)
  • A potential barrier appears in the equation of motion of fields around a black hole:
  • Black holes radiation spectrum is decomposed into three part:

De Sitter horizon

Tortoise coordinate

Potential barrier

Black hole’s horizon

Break vacuum fluctuations

Cross the potential barrier

Phase space term

J. Grain, A. Barrau, LPSC-Grenoble

calculation of greybody factors 2
Calculation of Greybody factors (2)

De Sitter horizon

Analytical calculations

Numerical calculations

Equation of motion analytically solved at the black hole’s and the de Sitter horizon

Equation of motion numerically solved from black hole’s horizon to the de Sitter one

J. Grain, A. Barrau, LPSC-Grenoble

calculation of greybody factors results for scalar in ds universe
Calculation of Greybody factors -results for scalar in dS universe-

d=4

The divergence comes from the presence of two horizons

P. Kanti, J. Grain, A. Barrau, Phys. Rev. D 71 (2005) 104002

J. Grain, A. Barrau, LPSC-Grenoble

slide34
Flux

Greybody factors in dS spacetime :

http://lpsc.in2p3.fr/ams/greybody

J. Grain, A. Barrau, LPSC-Grenoble

perspectives1
Perspectives

Compatibility with astrophysical and cosmological data OK

A. Barrau, C. feron, J. Grain, in press for Astrophys. J. (2005)

  • Computations for fermions in dS spacetime (Grain, Kanti, Barrau)
  • Computations for bosons and fermions in AdS spacetime (Grain, Kanti, Barrau)
  • Investigation of the LHC signals (Labbé, Grain, Barrau)
  • Gravitationnal blueshift (Barrau, Muteau-Jaouen)

J. Grain, A. Barrau, LPSC-Grenoble

conclusion
Conclusion

Big black holes are fascinating…

But small black holes are far more fascinating!!!

J. Grain, A. Barrau, LPSC-Grenoble

primordial black holes in our galaxy
Primordial Black holes in our Galaxy

F.Donato, D. Maurin, P. Salati, A. Barrau, G. Boudoul, R.Taillet

Astrophy. J. (2001) 536, 172

A. Barrau, G. Boudoul et al.,

Astronom. Astrophys., 388, 767 (2002)

Astrophys. 398, 403 (2003)

Barrau, Blais, Boudoul, Polarski,

Phys. Lett. B, 551, 218 (2003)

J. Grain, A. Barrau, LPSC-Grenoble

cosmological constrain using pbh
Cosmological constrain using PBH
  • Small black holes could have been formed in the early universe
  • Stringent constrains on the amount of PBH in the galaxy:

The anti-proton flux emitted by PBH is evaluating using an improved propagation scheme for cosmic rays

  • This leads to constrain on the PBH fraction
  • New window of detection using low energy anti-deuteron

J. Grain, A. Barrau, LPSC-Grenoble

ad