1 / 29

Trauma Resuscitation

Trauma Resuscitation. Yael Moussadji, R3 Emergency Medicine. “resuscitare”…. Latin – to reanimate or revive Refers to the diagnostic and therapeutic maneuvers used to treat trauma patients Defines restoration of physiologic parameters Reversal of shock. Objectives.

Download Presentation

Trauma Resuscitation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Trauma Resuscitation Yael Moussadji, R3 Emergency Medicine

  2. “resuscitare”… • Latin – to reanimate or revive • Refers to the diagnostic and therapeutic maneuvers used to treat trauma patients • Defines restoration of physiologic parameters • Reversal of shock

  3. Objectives • To review how to improve your efficiency in a trauma resuscitation • To review the pathophysiology of trauma and the keys to stabilizing your patient • To discuss (briefly) the controversies around fluid resuscitation • To discuss pre-hospital considerations and the trauma system at large

  4. Epidemiololgy and the Trauma System • Trauma is a disease of the young and is the No. 1 cause of death in people aged 1-37 • Among fatal MVCs, 38% are associated with alcohol and drug use, and only 37% were wearing seatbets • Regionalization of trauma care first came about in the 1970s with the creation of the first trauma centre at the University of Maryland • Now regional planning with designated trauma centres is essential, and involves ambulance destination polices and quality assurance programs to monitor patient outcomes

  5. Prehospital Considerations • The appropriate management of patients in the prehospital setting has been complicated by well intentioned traditional attempts to simplify it • The controversial issues most impact patients with post-traumatic internal hemorrhage and post-traumatic circulatory arrest

  6. Tenants of Prehospital Trauma Care • Prevention of additional injury • Careful extrication, spinal immobilization, spliting • Rapid transport • Advance notification to trauma facility • Field interventions • Spinal immobilization, airway management, restoration of circulating volume

  7. Post-traumatic hemorrhage • In 1994, a large prospective controlled clinical trial comparing immediate prehospital and ED fluid resuscitation with delayed resuscitation until arrival in the O.R. found that hypotensive patients with penetrating torso injuries did worse if they received early resuscitation with crystalloids (higher mortality, more post-op complications) • It is postulated that elevated SBP results in mechanical disruption of soft clot and dilution of clotting factors, accelerating ongoing hemorrhage • No studies have correlated fluid resuscitation with increased survival • Key factors in the survival of critically injured patients are limited to rapid transport to an appropriate facility and aggressive airway control

  8. Guidelines for fluid administration • Despite the recent evidence, the American College of Surgeons recommendations for trauma resuscitation still maintain that an initial infusion of LR or NS is the standard of care for the initial treatment of hemorrhagic shock • It may be prudent however to undertake a moderate resuscitation for patients with uncontrolled vascular injuries of the torso (with the exception of the moribund patient)

  9. Trauma-associated circulatory arrest • Implies that although the patient may be pulseless and apneic, the heart may still be beating (hypovolemia, tamponade, pneumo) • Survival is associated with younger age, single organ involvement, less than 10 min to surgical intervention, rapid prehospital ETI with slow (6-8 breaths/min) controlled ventilations (aggressive ventilation can severely impair cardiac output) • “Scoop & Treat” vs “Scoop & Run”

  10. The trauma bay Resuscitation physicians Paradigms of resuscitation Horizontal resuscitation – one physician performs the primary and secondary surveys in their entirety A second physician performs procedures as they come up Conducting a Resuscitation

  11. The Trauma Team • Success of a horizontal resuscitation depends on each member of the team understanding and executing her role while the identified team leader (YOU!) keeps control and makes treatment decisions • For all Level 1 traumas in our trauma system, EP’s act as the assessment physician and conduct the initial primary +/- secondary surveys; stand to the patients right near the head and verbalize your findings loudly • If a procedure physician is available, he or she is positioned on the patients left and may need to perform chest thoracostomy, central line insertion, splinting etc • Trauma nurses are positioned on each side of the patient and are responsible for ECG monitoring, vital signs, labs, IV access and fluid administration

  12. Hemorrhage and Shock

  13. Goals • Securing the airway, maintaining ventilation, controlling hemorrhage and reversing shock • Trauma deaths show a trimodal distribution; immediately, within the first 24 hours, in the next 3-4 weeks; MOF is the leading cause of mortality in patients who survive the initial resuscitation and surgical intervention • Failure to adequately resuscitate in the ER can lead to acidosis, hypothermia, and coagulopathy, resulting in MOF and death • ISS, age, platelet count on admission, and lactate at 12 hours are all predictors of the development of MOF

  14. Shock • Basic cellular derangement involves an imbalance of oxygen utilization • SIRS and MOF is on the far end of a continuum initated and perpetuated by inflammation and inflammatory mediators • Acute hemorrhage causes decreased CO and pulse pressure, resulting in tachycardia, vasoconstriction and redistribution of blood flow away from non-vital organs and initiating a multi-hormonal response • Aim is to stabilize and reverse these derangements before damage is done to individual organ systems • Base deficit is an indirect measure of lactate production and a reliable indicator of shock; lactate correlates with depth of shock and is a predictor of mortality

  15. Priorities in Management • Assess and manage the airway and ventilation simultaneously (ETI, CXR, thoracostomy) • Control external hemorrhage with manual pressure, obtain vascular access, and begin volume resuscitation with crystalloids +/- blood • Identify source of hemorrhage: ongoing blood loss causing hypotension can usually be found in the chest, abdomen, or retroperitoneum • Conduct of thorough exam with frequent reassessments of the ABCs; incorporate the X-rays of the chest and pelvis and the FAST into your primary survey • Always protect the C-spine; obtain X-rays once stable

  16. Resuscitation Fluid

  17. Colloid vs Crystalloid • A large evidence based review of more than 82 studies comparing crystalloid to colloid resuscitation was published by the McMaster group in 1999 (Crit Care Med); there was no overall difference in mortality, pulmonary edema, or length of stay, but there was a trend toward better survival in trauma patients with crystalloid use (poor confidence intervals) • In order to show a significant difference in mortality, an RCT would have to enroll more then 9000 patients • In a systematic review of 30 studies with 1419 patients, albumin has been shown to increase risk of death • Overall the greatest difference is the exhorbitant cost of colloids compared to crystalloids • Therefore, colloid resuscitation cannot be recommended for routine use in the resuscitation of patients with hemorrhagic shock

  18. NS or LR • The non-anion gap acidosis that has been noted with NS use is not secondary to hyperchloremia, but in fact a lactic acidosis secondary to hypoperfusion • LR improves this acidosis because the lactate isomer is converted to bicarb, which acts as a buffer • Adequate resuscitation returns the pH to normal regardless of which fluid is used • NS is preferred in patients with TBI because of the slight hypertonicity (154mmol/L)

  19. Blood • The decision to transfuse is made after consideration of mechanism of injury, hemodynamic status, response to crystalloid infusion, and pre-morbid status • In general, all trauma patients should receive a 2 L crystalloid infusion first • If they remain hemodynamically unstable or have had significant blood loss, begin transfusing immediately; 2 units of O neg (O pos in men) wide open through a fluid warmer

  20. Transfusion Triggers • One large multicentre RCT showed that receving transfusions to a Hg threshold of 90 conferred no physiologic benefit compared to 70, and in younger patients with less severe illness the mortality was higher (some benefit noted for patients with AMI and UA) • Patients with massive transfusions are at a higher risk of dying from their injuries; independent predictors of mortality include persistent hypotension, inotrope requirements intra-operatively, and need for cross clamping of the aorta; interestingly, the amount of units of blood transfused was not an independent predictor of a bad outcome • Therefore massive transfusion requirements cannot be used as an indicator to discontinue resuscitation efforts

  21. Other Blood Products • During large volume transfusions of PRBCs, other blood products must be given • As a guideline, give 2 units FFP for every 4-6 units of PRBCs (and when INR is elevated) • Platelet counts <100 are common in severe trauma; patients with ongoing bleeding should receive 6-10 units of platelets

  22. Approach to the Secondary Survey • Neurologic exam • LOC, pupils, H/N, CNs, TMs, spinal cord function, peripheral nerve exam • Ability to move extremities and sense pain indicates intact cord • Thoracic exam • Always remember to inspect and feel the chest wall for contusions, bony crepitus, flail segments, SC emphysema • Abdominal exam • Insertion of OG and foley, urine for R+M • Cardiac exam • ECG • MSK exam • Identify deformity, swelling, tenderness; check pulses

  23. Diagnostic Imaging in Trauma • For the critically ill patient, incorporate X-rays of the chest and pelvis into your primary survey; C-spine series early for the stable moderately injured patient • FAST can also be incorporated into the primary survey for the detection of hemoperitoneum and the identification of patients who need immediate laparotomy • Assesses heptorenal recess, splenorenal recess, and rectovesicular recess for free fluid; false negative scans commonly involve bowel perfs, contained liver or spleen lacs • Also evaluates for pericardial fluid • Stable patients can be further assessed by CT, which is the gold standard in identifying location and extent of solid organ injury, presence of aortic or thoracic injury

  24. Special Situations

  25. Closed Head Injury • Hemorrhagic shock with CHI portends a poor prognosis; persistent hypotension is one of the worst prognostic indicators for recovery • Treatment aimed at restoring BP, controlling bleeding, assuring adequate CPP • Diagnosis and treatment of hypotension always takes precedence over the head injury • Defer head CT in patients with evidence of intra-abdominal bleeding and hypotension – they need a laparotomy • Do not withhold fluids for fear of cerebral edema; consider HTS as a resuscitation fluid

  26. Spinal Cord Injury • Neurologic shock and hemorrhagic shock can occur simultaneously; treat first as presumed blood loss • Both are treated with aggressive fluid resuscitation • If bleeding has been excluded, vasopressors are indicated after adequate volume loading • Patients in neurogenic shock are inappropriately vasodilated and often bradycardic due to a loss of sympathetic tone • Dopamine is the drug of choice for its chronotropic, inotropic, and vasoconstrictive effects

  27. The Elderly • Age alone is not a predictor or morbidity and mortality in trauma • However, elderly patients have less physiologic reserve, more premorbid conditions, and less ability to compensate for injury • Vascular compliance, myocardial reserve, and bone strength are compromised • Heart disease is the leading premorbid condition that puts elderly patients are higher risk of complications • Consider medications (beta-blockers, coumadin)

  28. The Pediatric Patient • The majority of pediatric blunt trauma patients can be resuscitated and treated non-operatively with great success • All grades of liver, spleen, and kidney injuries can be managed non-operatively • Laparotomy has been shown to increase blood loss and transfusion requirements over successful non-operative management • Therefore children should be treated based on their response to resuscitation, not their injury

  29. Conclusion • Preparation is key! • Own the room. Become comfortable and efficient as a team leader. • Rapid resuscitation and stabilization is where we can have the most impact on our patients

More Related