1 / 26

J’= 5

v’. J’= 5. 0. The selection rules for vibration rotation transitions are ∆v = ±1 ∆J = ±1. v”. J”= 5. 0. Rotational Structure. J’= 5. v’ = 0. 0. R(3). R(2). R(1). R(0). J”= 5. v” = 0. 0. R Branch. Rotational Structure. J’= 5. v’ = 0. 0. P(4). R(3). P(3). P(2). R(2).

aliciac
Download Presentation

J’= 5

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. v’ J’= 5 0 The selection rules for vibration rotation transitions are ∆v = ±1 ∆J = ±1 v” J”= 5 0

  2. Rotational Structure J’= 5 v’ = 0 0 R(3) R(2) R(1) R(0) J”= 5 v” = 0 0 R Branch

  3. Rotational Structure J’= 5 v’ = 0 0 P(4) R(3) P(3) P(2) R(2) R(1) P(1) R(0) J”= 5 v” = 0 0 R Branch P Branch

  4. J V’ J V”

  5. J + 1 J V’ J – 1 J V”

  6. J + 1 J B’ J (J+ 1) V’ J – 1 J B”J (J+ 1) V”

  7. B’ (J+ 1)(J+2) J + 1 J B’ J (J+ 1) V’ J – 1 J B”J (J+ 1) V”

  8. B’ (J+ 1)(J+2) J + 1 J B’ J (J+ 1) V’ J – 1 B’ (J – 1) J J B”J (J+ 1) V”

  9. B’ (J+ 1)(J+2) J + 1 J B’ J (J+ 1) V’ J – 1 B’ (J – 1) J J B”J (J+ 1) V”

  10. B’ (J+ 1)(J+2) J + 1 J B’ J (J+ 1) V’ J – 1 B’ (J – 1) J R(J) J B”J (J+ 1) V”

  11. B’ (J+ 1)(J+2) J + 1 J B’ J (J+ 1) V’ J – 1 B’ (J – 1) J R(J) P(J) J B”J (J+ 1) V”

  12. B’ (J+ 1)(J+2) J + 1 J J – 1 B’ (J – 1) J R(J) P(J) J B”J (J+ 1)

  13. B’ (J+ 1)(J+2) J + 1 B’ (J2 + 3J +2) J J – 1 B’ (J – 1) J R(J) P(J) J B”J (J+ 1) V”

  14. B’ (J+ 1)(J+2) J + 1 B’ (J2 + 3J +2) J J – 1 B’ (J – 1) J B’ (J2 – J) R(J) P(J) J B”J (J+ 1) V”

  15. B’ (J+ 1)(J+2) J + 1 B’ (J2 + 3J +2) J J – 1 B’ (J – 1) J B’ (J2 – J) R(J) P(J) J B”J (J+ 1) V” Harry Kroto 2004

  16. B’ (J+ 1)(J+2) J + 1 B’ (J2 + 3J +2) J J – 1 B’ (J – 1) J B’ (J2 – J) B’ (4J + 2) R(J) P(J) J B”J (J+ 1) V”

  17. B’ (J+ 1)(J+2) J + 1 B’ (J2 + 3J +2) J J – 1 B’ (J – 1) J B’ (J2 – J) B’ (4J + 2) = 4B’(J + ½) R(J) P(J) J B”J (J+ 1) V”

  18. Rotational Structure J’= 5 v’ = 0 0 P(4) R(3) P(3) P(2) R(2) R(1) P(1) R(0) J”= 5 v” = 0 0 R Branch P Branch Harry Kroto 2004

  19. Rotational Structure J’= 5 v’ = 0 0 P(4) R(3) P(3) R(2) P(2) R(1) P(1) R(0) J”= 5 v” = 0 Central section of the CN 0-0 Band 0 R Branch P Branch Harry Kroto 2004

  20. Rotational Structure J’= 5 v’ = 0 0 P(4) R(3) P(3) R(2) P(2) R(1) P(1) R(0) J”= 5 v” = 0 Central section of the CN 0-0 Band 0 R Branch P Branch Harry Kroto 2004

  21. Rotational Structure J’= 5 v’ = 0 0 P(4) R(3) P(3) P(2) R(2) R(1) P(1) R(0) J”= 5 v” = 0 Central section of the CN 0-0 Band 0 R Branch P Branch Harry Kroto 2004

  22. Rotational Structure J’= 5 v’ = 0 0 P(4) R(3) P(3) R(2) P(2) R(1) P(1) R(0) J”= 5 v” = 0 0 R Branch P Branch Harry Kroto 2004

  23. Harry Kroto 2004

More Related