Atmospheric sub micron aerosol organic results from aerosol mass spectrometry
This presentation is the property of its rightful owner.
Sponsored Links
1 / 20

Atmospheric Sub-micron Aerosol Organic:  Results from Aerosol Mass Spectrometry PowerPoint PPT Presentation


  • 193 Views
  • Uploaded on
  • Presentation posted in: General

Atmospheric Sub-micron Aerosol Organic:  Results from Aerosol Mass Spectrometry. Douglas R. Worsnop, John Jayne, Manjula Canagaratna, Tim Onasch, Hacene Boudries, Leah Williams Aerodyne Research, Inc. Jose Jimenez , Qi Zhang, Peter DeCarlo, Alex Huffman, Alice Delia University of Colorado

Download Presentation

Atmospheric Sub-micron Aerosol Organic:  Results from Aerosol Mass Spectrometry

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Atmospheric sub micron aerosol organic results from aerosol mass spectrometry

Atmospheric Sub-micron Aerosol Organic:  Results from Aerosol Mass Spectrometry

Douglas R. Worsnop, John Jayne, Manjula Canagaratna,

Tim Onasch, Hacene Boudries, Leah Williams

Aerodyne Research, Inc.

Jose Jimenez , Qi Zhang, Peter DeCarlo, Alex Huffman, Alice Delia

University of Colorado

Rami Alfarra, James Allan, Keith Bower, Hugh Coe

UMIST

Ann Middlebrook Jay Slowik, Paul Davidovits

NOAA Boston College

Frank Drewnick, Johannes Schneider Silke Weimer, Ken Demerjian

MPI Mainz SUNY Albany

European Monitoring and Evaluation Program (EMEP)

Workshop on Particulate Matter (PM) Measurement

United Nations Economic Commission for Europe

New Orleans, Wednesday, April 21, 2004


Aerodyne aerosol mass spectrometer ams

Aerodyne Aerosol Mass Spectrometer (AMS)

Particle

Aerodynamic Sizing

Particle Beam

Composition

Generation

Quadrupole

Mass Spectrometer

Chopper

Thermal Vaporization &

Electron Impact Ionization

TOF Region

Aerodynamic Lens

(2 Torr)

Turbo Pump

Turbo Pump

Turbo Pump

Particle Inlet (1 atm)

100% transmission (60-600 nm), aerodynamic sizing, linear mass signal.

Jayne et al., Aerosol Science and Technology 33:1-2(49-70), 2000.

Jimenez et al., Journal of Geophysical Research, 108(D7), 8425, doi:10.1029 / 2001JD001213, 2003.


Atmospheric sub micron aerosol organic results from aerosol mass spectrometry

AMS:Size Resolved Chemical Composition

of Sub-micron aerosol (PM1)

Non-refractory (NR) composition (thermal vaporization at 600C)

e.g. no black carbon (BC), dust or (typically) seasalt

Electron Impact (EI) Mass Spectrometry – quantitative mass loading

All NR components detected with little uncertainty

direct calibration / chemically unbiased sample

Mass spectrum of inorganics and organics easy to separate

Analysis of organic matter (OM) – primary vs secondary

hydrocarbon (lube oil) vs oxidized (HULIS)

direct measure of OM/OC ratio

Aerodynamic focusing and sizing

collection efficiency  1 for aspherical particles; e.g. (NH4)2SO4

measure CE with beam width probe – particle shape information

aerodynamic (AMS) + mobility (SMPS) sizing

 particle mass, density, shape and fractal dimension + chemistry


Atmospheric sub micron aerosol organic results from aerosol mass spectrometry

Mass balance –TEOM, PILS, OC/EC

Organic classification: primary vs oxidized  OM/OC ratio

Sizing – comparison with SMPS ( and Moudi)

small, fractal organic vs mixed organic/sulfate accumulation

dirunal and seasonal patterns

compare to vehicle and dynometer emissions

Future:

ToF-AMS, higher sensitivity (aircraft time response)

and single particle composition

“cheaper, simpler” Q-AMS system

hour time resolution

size binning (<100nm, 100-200 nm, > 200 nm)


Real time chemical and physical composition of aerosols

Real Time Chemical and Physical Composition of Aerosols

Aerosol Sampling

Sampling frequency - >10Hz

Real-time measurement.

AMS

Nitrate

Sulphate

Ammonium Alkanes

Organics Aromatics

Etc..

Mass distribution

Chemical composition


Atmospheric sub micron aerosol organic results from aerosol mass spectrometry

Mass Loading A (MWA/IEA)  Ion Signal

ai

Calibration Factor * (MWNO3/IENO3)

EI Ionization: A + e- ----> A+ ----> ai+

EI Ionization

Cross

Sections


Atmospheric sub micron aerosol organic results from aerosol mass spectrometry

Typical ambient aerosol mass spectrum


Atmospheric sub micron aerosol organic results from aerosol mass spectrometry

Group Molecule/SpeciesIon FragmentsMass Fragments

Water H2O H2O+ , HO+ , O+18,17, 16

AmmoniumNH3 NH3+, NH2+, NH+17, 16, 15

Nitrate HNO3 HNO3+, NO2+, NO+63, 46, 30

SulfateH2SO4 H2SO4+, HSO3+, SO3+ 98, 81, 80

SO2+, SO+64, 48

Organic CnHmOy H2O+, CO+, CO2+ 18, 28, 44

(Oxygenated)H3C2O+, HCO2+, Cn’Hm+ 43, 45, ...

Organic CnHm Cn’Hm’+27,29,41,43,55,57,69,71...

(hydrocarbon)

e-

e-

e-

e-

e-

e-

MS Signatures for Aerosol Species Identification

color coded to match spectra

Standard electron impact ionization @ 70 eV

Easy to quantify: ca. NIST MS library

Easy to separate inorganic and organic components

Speciation of organic composition is challenging


Atmospheric sub micron aerosol organic results from aerosol mass spectrometry

Comparison of PMTACS’01and PMTACS’04

Time Series,

Diurnal Plots,

and Data Diagnostics

Silke Weimer+, Frank Drewnick‡, Doug Worsnop*, Ken Demerjian+

+ Atmospheric Sciences Research Center, Albany/NY, ‡ MPI for Chemistry, Mainz;

*Aerodyne Res. Inc./Billerica/MA


Atmospheric sub micron aerosol organic results from aerosol mass spectrometry

Mass Balance AMS vs.TEOM

Speciated Mass, Queens, NY

The “Other” Category

-PM1 vs PM2.5

-elemental carbon

-crustal oxides

Drewnick et al, 2003

F. Drewnick, J. Schwab, K. Demerjian ASRC SUNY Albany


Atmospheric sub micron aerosol organic results from aerosol mass spectrometry

WINTER

Comparison of FDMS and AMS, PMTACS04 PRELIMINARY

AMS/FDMS ~ 0.7

for AMS Particle Collection Efficiency: CE = 0.5

FDMS – Dirk Felton, NYSDEC


Atmospheric sub micron aerosol organic results from aerosol mass spectrometry

10 minute data in PMTACS04

PRLIMINARY

ESTIMATED

Primary organic

Oxidized organic

Plumes of primary organic are clearly observed

- due to vehicles driving by the site

(frequency increased after college re-opened in

last week of study)

Weimer, Drewnick et al


Atmospheric sub micron aerosol organic results from aerosol mass spectrometry

Organic Mass Spectra

e-

CnHm ----> Cn’Hm’+

27, 29, 41, 43, 55, 57,69, 71, ...

C4H9+

e-

CnHmOy ----> H2O+ CO+ CO2+ C2H3O+

18 28 44 43

27, 29, 55, ….

Following flash vaporization at ~600C


Atmospheric sub micron aerosol organic results from aerosol mass spectrometry

Diurnal Cycles of OM Classes

Weimer, Drewnick et al

Summer

57 – primary marker

Winter

44 – oxidized marker


Atmospheric sub micron aerosol organic results from aerosol mass spectrometry

Aerosol Size-Resolved Composition with the Aerodyne AMS in PittsburghJose-Luis Jimenez*, Qi Zhang, Manjula Canagaratna, John Jayne, Doug Worsnop, Charles Stanier, Spyros Pandis*Dept. Chemistry & CIRESUniversity of Colorado at BoulderEPA Supersite MeetingFeb. 26, 2004


Atmospheric sub micron aerosol organic results from aerosol mass spectrometry

Diesel Vehicle Exhaust

Primary Organic

Component in

Pittsburgh

Zhang, Jimenez et al.

Jayne, Canagaratna et al.


Atmospheric sub micron aerosol organic results from aerosol mass spectrometry

Oxidized Organic

Component in

Pittsburgh

Zhang, Jimenez et al.

Fulvic Acid

“HULIS” ????

Rami Alfarra et al (UMIST)


Atmospheric sub micron aerosol organic results from aerosol mass spectrometry

Total Organics Quantitation vs. Sunset Labs OC

Pittsburgh “Super Site”

OM / OC ~ 1.7

Total Organic = C  (all organic ions)

Qi Zhang, Jose Jimenez, CU


Atmospheric sub micron aerosol organic results from aerosol mass spectrometry

FUTURE IDEAS  lower cost

“Cheaper” AMS – smaller, no fast electronics, limited size binning

approaching cost and operational equivalent of RGA or GCMS

simple calibration system?

cost equivalent to collection of individual continuous instruments

add thermal denuder to evaluate semivolatile component

Aerosol Collection (with aerodynamic lens)

(Paul Ziemann) – in situ (EI) mass spectrometric analysis

- separation via volatility

aerosol collection (< 1 hour) [ Hacene Boudries ]

for direct injection into speciation detectors

e.g. GCMS, PTRMS


Acknowledgments

Aerodyne

Doug Worsnop

John Jayne

Manjula Canagaratna

Hacene Boudries

Tim Onasch

Phil Mortimer

Leah Williams

Boston College

Jay Slowik

Paul Davidovits

Arizona State

Jonathan Allen

Utah State

Phil Silva

JAPAN

Nobu Tagekawa (Tokyo)

Yutake Kondo (Tokyo)

Akinori Takami (NIES)

Akio Shimono (Sanyu)

Ken-ichi Akiyama (JARI)

Boulder

Jose Jimenez (UC)

Alice Delia, Darren Toohey

Ann Middlebrook(NOAA)

Qi Zhang, Peter Decarlo (UC)

Alex Huffman, Katja Dzepina

Caltech

John Seinfeld, Rick Flagan

Roya Bahreini

Environment Canada

Shao Meng Li, Jeff Brook

Kathy Hayden, Gang Lu,

Richard Leaitch

SUNY Albany

Ken Demerjian

Wyoming

Peter Liu

Derek Montague

PNNL / BNL

Carl Berkowitz, Pete Daum

Acknowledgments

UMIST

Hugh Coe

Keith Bower

Paul Williams

James Allen

Rami Alfarra

MPI Mainz

Frank Drewnick

Johannes Schneider

Stephan Borrmann

Joachim Curtius

CEH (Edinburgh)

Eiko Nemitz

David Anderson

KFA Juelich

Thomas Mentel

Andreas Wahner

MIT

Xuefeng Zhang

Ken Smith

TOFWERK

Marc Gonin

Katrin Fuhrer

Support: NSF, ONR, DoE

EPA, NASA, NOAA, JARI

Environment Canada


  • Login