מכללה האקדמית אורט בראודה
This presentation is the property of its rightful owner.
Sponsored Links
1 / 12

Bipolar Transistor PowerPoint PPT Presentation


  • 271 Views
  • Uploaded on
  • Presentation posted in: General

מכללה האקדמית אורט בראודה המחלקה להנדסת חשמל ואלקטרוניקה מוליכים למחצה 31350. תרגול מס' 14. Bipolar Transistor. (BJT - bipolar junction transistor). Bipolar Transistor. Bipolar transistor was invented by Walter Brattain, John Bardeen and William Shockley (Bell Labs) in 1949.

Download Presentation

Bipolar Transistor

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Bipolar transistor

מכללה האקדמית אורט בראודההמחלקה להנדסת חשמל ואלקטרוניקה

מוליכים למחצה 31350

תרגול מס'14.

Bipolar Transistor

(BJT - bipolar junction transistor)


Bipolar transistor

Bipolar Transistor

Bipolar transistor was invented by Walter Brattain, John Bardeen and William Shockley (Bell Labs) in 1949.

It is a 3-terminal device, which is usually used as an amplifier or a switch.

Examples of typical bipolar transistors

3D sketch of pnp bipolar transistor


Bipolar transistor

What is Bipolar Transistor ?

Bipolar transistor is a semiconductor device with two interacting PN-junctions, connected together in series back-to-back.

two types of bipolar transistors:

the Base HAVE TO be short enough to allow crosstalk between the Emitter and the Collector

arrow symbol ↔ Emitter

arrow direction ↔ current direction

Outstanding guide on npn transistor


Bipolar transistor

Bipolar Transistor modes

cutoff

saturation

In cutoff, biasing conditions are opposite to those of saturation, namely, both junctions are reverse biased. There is very little current flow, which corresponds to a logical "off", or an open switch.

With both junctions forward-biased, a BJT is in the saturation mode and facilitates high current conduction from the emitter to the collector. This mode corresponds to a logical "on", or a closed switch.

active

reverse-active

By reversing the biasing conditions of the forward-active region, a bipolar transistor goes into reverse-active mode. In this mode, the emitter and collector regions switch roles. The βF in inverted mode is several times (2–3 times for the ordinary Ge BJT) smaller than that of active mode. (Seldomly used mode.)

In the active mode, the emitter–base junction is forward biased and the base–collector junction is reverse biased. Most of BJTs are designed to afford the greatest common-emitter current gain, βF, in the active mode. If this is the case, the collector–emitter current is approximately proportional to the base current, but many times larger, for small base current variations.


Bipolar transistor

Band diagram of BJT

(active mode biased pnp)

EF quasi

electrons

holes

holes

Emitter

Collector

Base


Bipolar transistor

Basic idea of BJT

Emitter - Base junction is asymmetric:

Thus, the Emitter’ hole current is controlled by Emitter - Base junction

The width of the neutral region of the Base is small (much less than the holes diffusion length):

Therefore most holes diffusing into the Base will reach the Collector


Bipolar transistor

Current flow (active mode - pnp)

magnetta – current of holes

rose – current of electrons

  • Emitter – Base currents (EB junction is forward-biased)

  • holes diffusing from the Emitter to the Base

  • electrons diffusing from the Base to the Emitter

  • Base currents

  • (3) recombination of holes injected into the Base

  • (4) most holes reach Collector since

  • Base – Collector currents (BC junction is under reverse bias)

  • (5) electron (minority carrier) current from Collector to Base

  • (6) hole (minority carrier) current from Base to Collector

can be neglected for most practical purposes


Bipolar transistor

BJT principle of operation

(active mode - pnp)

magnetta – current of holes

rose – current of electrons

בטרנזיסטור pnp, חורים (מטעני רוב ב- emitter) הוזרקים דרך צומת PN emitter-base (הנמצא בממתח הקדמי) לאזור ה- base. חלק מהחורים עושים רקומבינציה עם אלקטרונים (מטעני רוב ב- base), חלק אחר חוזרים בחזרה (ע"י סחיפה) ל- emitter. אבל היות וה- base הוא דק מאד ומסומם יחסית מעט, רוב החורים, שהוזרקו מה- emitter, מצליחים להגיע (ע"י דיפוזיה) עד לאזור המחסור בצומת collector-base. צומת PN זה (base – collector) נמצא בממתח האחורי. השדה החזק של הצומת לוקח את החורים (להזכיר, כי חורים הם מטעני מיעוט ב- base ובשבילם הצומת הוא פתוח) ומעביר אותם ל- collector. לכן זרם ה- collector כמעט שווה לזרם ה- emitter (מלבד החלק הקטן שנאבד ב- base עקב רקומבינציה) : .

המקדם המקשר בין זרם ה- emitter לזרם ה- collector (המקדם ) נקרא מקדם המעבר של זרם ה- emitter. בדרך כלל משתנה בין 0.9 ל-0.999 . ככל ש- גדול יותר, כך העברת הזרם ע"י טרנזיסטור היא יעילה יותר. יש לציין, כי כמעט ולא תלוי במתחים ו- .

בהמשך נראה, כי המקדם המקשר בין זרם ה- base לזרם ה- collector (המקדם ) מתבטא דרך המקדם בצורה הבאה: . מעצם העובדה ש- כמעט ולא תלוי במתחים בצמתים, נובע, כי גם בטווח רחב של מתחים נשאר קבוע. לכן, ע"י השינוי בזרם החלש של base, , ניתן לשלוט בזרם החזק של ה- collector , .

Thus the (small) base current controls the (strong) collector current


Bipolar transistor

Basic amplifier circuits

common-base configuration

input

output

= current amplification in common-base circuit

Since , typical values for are:

By setting and

we control and


Bipolar transistor

Basic amplifier circuits

common-emitter configuration

output

input

= current amplification in common-emitter circuit

The gain, , is determined by doping

is very sensitive to :

By setting and ,

we control and


Bipolar transistor

Basic amplifier circuits

common-collector configuration

(grounded collector or Voltage Follower or Emitter Follower)

input

output

= current amplification in common-emitter circuit

By setting and ,

we control and


Bipolar transistor

References

  • B. Streetman, S. Banerjee, “Solid state electronic devices” (6th edition), Prentice Hall, 2005.

  • B. Streetman, S. Banerjee, “Instructor’s solutions manual to the “Solid state electronic devices” ” (6th edition), Prentice Hall, 2005.

  • B. Van Zeghbroeck, “Principles of semiconductor devices”, Lectures – Colorado University, 2004.

  • D. Neamen, “Semiconductor Physics and Devices: Basic Principles” (3rd edition), McGraw Hill, 2003.

  • D. Neamen, “Semiconductor Physics and Devices: Basic Principles” (3rd edition) – Solutions manual, McGraw Hill, 2003.


  • Login