1 / 40

Welding, Cutting and Brazing

Welding, Cutting and Brazing. 29 CFR 1910.251 & 1926.350 Subpart Q & J By: Chou Lor, Safety Coordinator. Welding, Cutting and Brazing. Training Objectives Three Specific Types of Welding Modules Methods of Arc Welding Welding Hazards Safe Work Practices Fire Protection & Prevention

alanna
Download Presentation

Welding, Cutting and Brazing

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Welding, Cutting and Brazing 29 CFR 1910.251 & 1926.350 Subpart Q & J By: Chou Lor, Safety Coordinator UW-Eau Claire Facilities Planning & Management

  2. Welding, Cutting and Brazing • Training Objectives • Three Specific Types of Welding Modules • Methods of Arc Welding • Welding Hazards • Safe Work Practices • Fire Protection & Prevention • Proper Ventilation for Welding • Welding Operators Protection UW-Eau Claire Facilities Planning & Management

  3. Three Specific Types of Welding Modules • In this Welding, Cutting, and Brazing module, three specific types of welding are covered. These are listed below: • Oxygen-fuel gas welding and cutting • Arc welding and cutting • Resistance welding UW-Eau Claire Facilities Planning & Management

  4. Oxygen-fuel gas welding & Cutting • The elements of Oxygen-fuel gas welding and cutting: • General Requirements • Cylinders • Service Pipe Systems • Pipe System Protection UW-Eau Claire Facilities Planning & Management

  5. Oxygen-fuel gas welding and cutting • General Requirements • Focuses on using Acetylene Safely • Flammable • Unstable • Cannot be adjusted above 15 psi • Safe Work Practices • Blow out cylinder valve • Turn on cylinder valve first and then adjust the regulator pressure screw. • Never stand in front or behind a regulator when opening the cylinder valve • Open cylinder valve slowly • The pressure adjusting screw: • Turning clockwise allows the gas allows to flow. • Turning counterclockwise reduces or stop the gas flow. UW-Eau Claire Facilities Planning & Management

  6. Oxygen-fuel gas welding and cutting • General Requirements Cont.: • Safe Work Practices • Purge oxygen and acetylene passages • Light the acetylene • Never use oil or grease • Do not use oxygen as a substitute for air • Keep your work area clean UW-Eau Claire Facilities Planning & Management

  7. Oxygen-fuel gas welding and cutting • Cylinders • Cylinder approval and marking • marked for the purpose of identifying the gas content, with either the chemical or trade name of the gas • Storage of cylinders • Storage area must be well ventilated • Cylinders must be at least 20 feet from combustibles • Valves must be closed • Valve protection must be in place • Inside storage must be limited to 2,000 cubic feet. • Cylinders must be stored in upright position • Oxygen must be at least 20 feet from fuel gas or 5 feet with a 1/2 hour fire barrier • Separate oxygen from fuel gas UW-Eau Claire Facilities Planning & Management

  8. Oxygen-fuel gas welding and cutting • Cylinders Cont.: • Operating Procedures • Operation must emphasize the absence of oily or greasy substances. Follow these rules of operation: • Cylinders, cylinder valves, couplings, regulators, hose, and apparatus shall be kept free from oily or greasy substances. • Oxygen cylinders or apparatus shall not be handled with oily hands or gloves. • A jet of oxygen must never be permitted to strike an oily surface, greasy clothes, or enter a fuel oil or other storage tank. UW-Eau Claire Facilities Planning & Management

  9. Oxygen-fuel gas welding and cutting • Service Pipe Systems • There are special requirements for service pipe systems when using oxygen or acetylene. • Oxygen • Acetylene or Acetylene Compounds UW-Eau Claire Facilities Planning & Management

  10. Oxygen-fuel gas welding and cutting • Pipe System Protection • The entire service pipe system must be protected against build-up of excessive pressure and leaks. This protection is accomplished with: • Protective equipment • Regulators • Proper hose and hose connections. UW-Eau Claire Facilities Planning & Management

  11. Oxygen-fuel gas welding and cutting • Pipe System Protection Cont.: • Protective equipment is divided into the two categories listed here: • Pressure Relief Devices • The pressure relief device should discharge upwards to a safe location. • Pressure relief valves are required in fuel-gas piping systems to prevent excessive pressure build up within the system. UW-Eau Claire Facilities Planning & Management

  12. Oxygen-fuel gas welding and cutting • Pipe System Protection Cont.: • Approved protective equipment shall be installed in fuel-gas piping to prevent: • Backflow of oxygen into the fuel-gas supply system • Passage of a flash back into the fuel-gas supply system • Excessive back pressure of oxygen in the fuel-gas supply system. UW-Eau Claire Facilities Planning & Management

  13. Arc Welding and Cutting • Definition: • A fusion process wherein the coalescence of the metals is achieved from the heat of an electric arc formed between an electrode and the work. • Application • Installation • Operation & Maintenance UW-Eau Claire Facilities Planning & Management

  14. Arc Welding & Cutting • Application • Applies to a large and varied group of processes that use an electric arc as the source of heat to melt and join metals. • Installation • Arc welding requires proper installation of equipment. • A critical part of installation is ensuring that proper grounding is completed. UW-Eau Claire Facilities Planning & Management

  15. Arc Welding & Cutting • Operation & Maintenance • All connections to the machine shall be checked to make certain that they are properly made. • The work lead shall be firmly attached to the work. • Magnetic work clamps shall be free from adherent metal particles of spatter on contact surfaces. • Coiled welding cable shall be spread out before use to avoid serious overheating and damage to insulation. UW-Eau Claire Facilities Planning & Management

  16. Arc Welding & Cutting • Operation and Maintenance Cont.: • During welding operations, cables with splices within 10 feet (3m) of the holder shall not be used. • Welders should not coil or loop welding electrode cable around parts of their body. • Cables with damaged insulation or exposed bare conductors shall be replaced. • Joining lengths of work and electrode cables shall be done by the use of connecting means specifically intended for that purpose. • The connecting means shall have insulation adequate for the service conditions. UW-Eau Claire Facilities Planning & Management

  17. Resistance Welding • Definition: • This is a group of fusion welding processes that use heat and pressure to make the coalescence. • The heat comes from electrical resistance to current flow at the site of the weld. • The processes include: • Spot Welding • Projection Welding • Seam Welding Note: FP&M only does spot welding. UW-Eau Claire Facilities Planning & Management

  18. Resistance Welding • Spot Welding • A process typically used in high-volume, rapid welding applications. • The pieces to be joined are clamped between two electrodes under force, and an electrical current is sent through them. • The advantages of spot welding are many and include the fact that it is: • An economical process • Adaptable to a wide variety of materials including low carbon steel, coated steels, stainless steel, aluminum, nickel, titanium, and copper alloys • Applicable to a variety of thicknesses • A process with short cycle times • A robust process • Tolerant to fit-up variations UW-Eau Claire Facilities Planning & Management

  19. Welding/Cutting Hazards • Potential Hazards • Fires may start by hot materials igniting nearby combustibles. • Burns to the operator may occur if unprotected skin comes into contact with the extremely hot work. • Magnetic fields could easily destroy/disrupt electronic components, stored data if not careful. UW-Eau Claire Facilities Planning & Management

  20. Welding/Cutting Hazards • Potential Hazards Cont.: • Metal fumes from vaporizing of the work with the extremely hot arcs may be inhaled into the worker’s lungs. • Certain metals and metal oxide fumes, including zinc, cadmium and beryllium, produce serious illnesses when inhaled. • Fluxes used with welding to create inert atmospheres at the point of the weld also present inhalation hazards. • All welding and cutting must have adequate ventilation to protect the person doing the welding and those working around the welding area. UW-Eau Claire Facilities Planning & Management

  21. Methods of Arc Welding • Three Types of Welding Methods: • Tungsten Inert Gas Welding (TIG) • Gas Metal Arc Welding (MIG) • Shielded Metal Arc Welding (SMAW)/ Stick Welding UW-Eau Claire Facilities Planning & Management

  22. Tungsten Inert Gas Welding (TIG) • Definition: • TIG welding is an arc that is formed between a non-consumable tungsten electrode and the metal being welded. • Gas is fed through the torch to shield the electrode and molten weld pool. • Benefits: • Welds with or without filler metal • Precise control of welding variables (heat) • Low distortion • Shielding Gases: • Argon • 2 to 5% Hydrogen • w/Helium UW-Eau Claire Facilities Planning & Management

  23. Tungsten Inert Gas Welding (TIG) • Applications • Most commonly used for aluminum and stainless steel • For steel • Slower and more costly than consumable welding • Except for thin sections or where very high quality is needed UW-Eau Claire Facilities Planning & Management

  24. Gas Metal Arc Welding (MIG) • Definition: • The heat source is formed by creating an electric arc between the work piece and a wire, which is fed continuously into the weld pool. • Benefits: • Long welds can be made without starts and stops • Minimal skill required • Minimal cleaning of surface before weld • Allows welding in all positions UW-Eau Claire Facilities Planning & Management

  25. Gas Metal Arc Welding (MIG) Cont. • Shielding Gases: • Inert • Argon, Helium • Used for aluminum alloys and stainless steels. • Active • 1 to 5% Oxygen, 3 to 25% CO2 • Used for low and medium carbon steels • Applications • Gas Metal Arc Welding (MIG) is used to weld all commercially important metals, including steel, aluminum, copper, and stainless steel. UW-Eau Claire Facilities Planning & Management

  26. Shielded Metal Arc Welding (SMAW)/Stick Welding • Definition: • Consumable electrode coated with chemicals that provide flux and shielding • The filler metal (here the consumable electrode) is usually very close in composition to the metal being welded. UW-Eau Claire Facilities Planning & Management

  27. Shielded Metal Arc Welding (SMAW)/Stick Welding • Benefits • Simple, portable,& inexpensive • Self flux provided by electrode • Provides all position flexibility • Shielding Gases • No shield gases added • Lower sensitivity to Wind UW-Eau Claire Facilities Planning & Management

  28. Shielded Metal Arc Welding (SMAW)/Stick Welding Cont.: • Applications • Construction, pipelines, shipbuilding, fabrication job shops. • Used for: Steels, stainless steels, cast irons. • Not used for aluminum and its alloys, or copper and its alloys (energy density is too high). UW-Eau Claire Facilities Planning & Management

  29. Cutting • Definition: • A stream of oxygen is directed against a piece of heated metal, causing the metal to oxidize or burn away. • Making a Cut • Mark a line as a guide. • Turn on acetylene as for welding and light. • Turn on oxygen adjusting flame to neutral. • Make sure the oxygen lever flame remains neutral. • Place metal on the cutting table so metal will fall clear. • Flame Types: Oxidizing Carborizing Neutral UW-Eau Claire Facilities Planning & Management

  30. Brazing • Definition: • A process which a filler metal is placed at or between the faying surfaces, the temperature is raised high enough to melt the filler metal but not the base metal. • The molten metal fills the spaces by capillary attraction. • Torch Brazing • Oxy-fuel torch with a carburizing flame • First heat the joint then add the filler metal UW-Eau Claire Facilities Planning & Management

  31. Safe Work Practices • Electric & Gas Welding • Safety Check: • Ensure electrical cord, electrode holder and cables are free from defects • No cable splices within 10 feet of electrode holder. • Ensure welding unit is properly grounded. This helps to avoid over heating. • All defective equipment shall be repaired or replaced before using. UW-Eau Claire Facilities Planning & Management

  32. Safe Work Practices • Electric & Gas Welding Cont.: • Safety Check: • Remove all jewelry – rings, watches, bracelets, etc… • Ensure PPE e.g.. welding hood, gloves, rubber boots or safety shoes, apron are available and in good condition. • Ensure fire extinguisher is charged and available. • Ensure adequate ventilation and lighting is in place. • Set Voltage Regulator to Manufacture’s specifications. • Avoid electrical shock DON’Twrap cables around any body part. • Ensure fittings are tight. UW-Eau Claire Facilities Planning & Management

  33. Safe Work Practices • Electric & Gas Welding Cont.: • Safety Check: • Inspect hoses for cuts and frayed areas. • Set gauges to desired PSI. • Ensure that sufficient PPE is made available. • Locate welding screens to protect employee’s – DON’Tblock your exit. • Ensure that adequate ventilation and lighting are in place. UW-Eau Claire Facilities Planning & Management

  34. Fire Protection & Prevention • Fire hazards must be removed, or • Guards installed, or • Welding/cutting must NOT take place • Hot work permit should be used outside designated areas to ensure that all fire hazards are controlled • Use of fire watch • 1/2 hour after operation ceases UW-Eau Claire Facilities Planning & Management

  35. Fire Protection & Prevention Cont.: • Welding areas should meet the following requirements: • Floors swept & cleared of combustibles 35 ft. radius of work area. • Flammable and combustible liquids kept 35 ft. radius of work area. • At least one fire extinguisher – on site • Protective dividers to contain sparks and slag • Welding curtains • Non-combustible walls • Fire resistant tarps & blankets UW-Eau Claire Facilities Planning & Management

  36. Proper Ventilation for Welding • Ventilation • Proper ventilation can be obtained either naturally or mechanically. • Natural Ventilation is considered sufficient for welding and brazing operations if the present work area meets these requirements: • Space of more than 10,000 square feet is provided per welder • A ceiling height of more than 16 feet. • Mechanical ventilation options generally fall into two basic categories. • Low vacuum system which takes large volumes of air at low velocities. • High vacuum system that are captured and extracted fumes as near to the work as possible. UW-Eau Claire Facilities Planning & Management

  37. Proper Ventilation for Welding • Ensure protection from fumes and gases by one or a combination of the following: • Good general ventilation. • Use of a booth. • Local exhaust ventilation on the hand piece. • Air supply to the helmet. UW-Eau Claire Facilities Planning & Management

  38. Welding Operators Protection • Welding involves specialized personal protection that must be worn every time you perform welding operations. The following is a list of basic PPE: • Fire-resistant gloves • Aprons • Safety shoes • Helmet • Ultraviolet radiation filter plate (arc welding) • Goggles with filter lenses UW-Eau Claire Facilities Planning & Management

  39. Welding, Cutting and Brazing • Summary • Major hazards include: • Fire • Burns • Shock • Toxic Exposure • Follow proper procedures to prevent fires • Use appropriate engineering controls • Wear appropriate PPE UW-Eau Claire Facilities Planning & Management

  40. Any Questions ?? Please visit FP&M Website (www.uwec.edu/facmgt./index.htm) for additional information. UW-Eau Claire Facilities Planning & Management

More Related