Ii principio della termodinamica
Download
1 / 45

II Principio della termodinamica - PowerPoint PPT Presentation


  • 262 Views
  • Uploaded on

II Principio della termodinamica. Il primo principio della termodinamica esprime ciò che si conserva: ogni forma di energia può trasformarsi in un’altra forma di energia, ma l'energia totale rimane costante. U B = U A + Q + (– W). Stato Iniziale U A. Calore Q. Lavoro W. Stato Finale

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' II Principio della termodinamica' - alan-webb


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Ii principio della termodinamica
II Principio della termodinamica

  • Il primo principio della termodinamica esprime ciò che si conserva:

  • ogni forma di energia può trasformarsi in un’altra forma di energia, ma l'energia totale rimane costante.

UB = UA + Q + (– W)

prof. Biasco - 2001-02


Stato Iniziale

UA

Calore

Q

Lavoro

W

Stato Finale

UB

UB = UA + Q + (– W)

prof. Biasco - 2001-02


Ii principio
II principio

  • Il primo principio non dice nulla sul verso secondo cui una trasformazione avviene.

    La natura fissa un verso alle trasformazioni:

  • un gelato, fuori dal frigo, si scioglie

  • il caffè bollente si raffredda,

  • Mettendo a contatto due corpi, uno caldo e l’altro freddo, il calore fluisce sempre dal corpo caldo al freddo.

  • Il tempo scorre sempre in avanti

prof. Biasco - 2001-02


Lavoro

Calore 1

Calore 2

Lavoro

Calore

  • L'energia meccanica e il lavoro si possono trasformare completamente in energia termica;

  • la trasformazione inversa di energia termica in lavoro può essere ottenuta soltanto mediante una macchina

Questa limitazione sembra essere una legge della natura ed è espressa in diversi modi dal secondo principio della termodinamica.

prof. Biasco - 2001-02


II principio della termodinamica (enunciato di Kelvin Planck).  

E' impossibile che una macchina operante in ciclo produca come solo effetto quello di sottrarre calore a un termostato e produrre una quantità equivalente di lavoro .

Lord Kelvin – Thomson William fisico inglese 1824 – 1907.

A 10 anni fu ammesso all’università di Glasgow. Si occupò principalmente di termodinamica e di elettromagnetismo

Max Planck Fisico tedesco 1858 – 1947. I suoi studi sulla radiazione di corpo nero sono all’origine della moderna meccanica quantistica.

Termostato

Q

Macchina termica

Lavoro

prof. Biasco - 2001-02


W > 0

Q > 0

Attenzione: il secondo principio non dice che è impossibile trasformare completamente il calore in lavoro, infatti questa trasformazione avviene in ogni espansione isotermica come nel dispositivo in figura,

ma che è impossibile trasformare completamente il calore in lavoro in modo continuo (ciclico)

Clicca sull’immagine

prof. Biasco - 2001-02


Il modo in cui funziona una macchina termica è indicato nello schema seguente:

Termostato caldo Tc

Qc

Macchina termica

Lavoro

Qf

Termostato freddo Tf

Quindi, il rendimento di una macchina termica non può mai essere = 1

prof. Biasco - 2001-02


II principio della termodinamica nello schema seguente: (Enunciato di Clausius)

E' impossibile che una macchina frigorigena operante in un ciclo produca come solo effetto quello di trasferire in modo continuo calore da un corpo più freddo a un corpo più caldo.

Clausius Rudolph Julius. Fisico tedesco Koslin 1822 – Bonn 1888

Si occupò principalmente di termodinamica, formulò il II principio della termodinamica e introdusse il concetto di entropia.

Termostato caldo Tc

Qc

Macchina frigorigena

Qf

Termostato freddo Tf

prof. Biasco - 2001-02


La macchina frigorigena è una macchina che toglie calore a un corpo freddo e lo cede a un corpo più caldo utilizzando energia.

Termostato caldo Tc

Qc

Macchina frigorigena

Energia

Qf

Termostato freddo Tf

Coefficiente di effetto frigorigeno

generalmente

prof. Biasco - 2001-02


Pressione un corpo freddo e lo cede a un corpo più caldo utilizzando energia.

A

B

D

C

volume

6.Ciclo di Carnot

Sadi Carnot Parigi 1796 – 1832. Figlio di Lazare Carnot (teorema di trigonometria)

Ingegnere interessato al miglioramento.delle macchine a vapore, ne studiò il rendimento massimo descrivendo un ciclo ideale per le macchine termiche.

Sembra dunque che il fatto che una macchina abbia rendimento < 1non sia dovuto solo a limitazioni tecniche della macchina;

la limitazione principale sembra essere dovuta proprio alla natura.

Per capire il limite teorico del rendimento di una macchina studiamo il comportamento di una macchina ideale rappresentata dal ciclo di Carnot.

A – B isotermica

B – C adiabatica

C – D isotermica

D – A adiabatica

prof. Biasco - 2001-02


Pressione un corpo freddo e lo cede a un corpo più caldo utilizzando energia.

A

B

D

C

volume

Tc = costante

Espans Isotermica

A B

Tf -- Tc

Tc -- Tf

Compres Adiabatica

D A

Espans. Adiabatica

B C

Tf = costante

Compres Isotermica

C D

Il ciclo di Carnot

prof. Biasco - 2001-02


Pressione un corpo freddo e lo cede a un corpo più caldo utilizzando energia.

A

B

D

C

volume

Ciclo di Carnot - Calcolo del Lavoro

Trasformazione A  B Espansione Isotermica

  TA = TB UA = UBU = UB UA = 0 allora

U = Qc  WAB  Qc =WAB con WAB > 0, Qc > 0

 nel tratto A B Tutto il calore si trasforma in lavoro

prof. Biasco - 2001-02


Pressione un corpo freddo e lo cede a un corpo più caldo utilizzando energia.

A

B

D

C

volume

Ciclo di Carnot - Calcolo del Lavoro

Trasformazione B  C Espansione Adiabatica

  Q = 0  allora U = Qc  WBC U =  WBC Uc  UB + WBC = 0

 WBC = UB Uc > 0 

Osserviamo che UB Uc > 0  UB > Uc  TB > Tc

 nel tratto B C Il gas compie lavoro a spese dell’energia interna e si raffredda

prof. Biasco - 2001-02


Pressione un corpo freddo e lo cede a un corpo più caldo utilizzando energia.

A

B

D

C

volume

Trasformazione C  DCompressione Isotermica

  TC = TD UC = UDU = UD UC = 0 allora U = Q’f WCD Q’f = WCD

con WCD < 0, Q’f < 0 ponendo Qf =  Q’f > 0

  avremo che WCD =  Qf

nel tratto C D Il lavoro che il gas riceve dall’ambiente si trasforma in calore che viene ceduto all’ambiente

prof. Biasco - 2001-02


Pressione un corpo freddo e lo cede a un corpo più caldo utilizzando energia.

A

B

D

C

volume

Trasformazione D  A

Compressione Adiabatica

  Q = 0  allora

U = Q  WDAU =  WDAUA UD + WDA = 0  WDA = UD UA < 0

Osserviamo che UD UA < 0  UA > UD TA > TD

 nel tratto D A Il lavoro che l’ambiente compie sul gas produce aumento dell’energia interna e il gas si riscalda e ritorna allo stato iniziale A

prof. Biasco - 2001-02


Pressione un corpo freddo e lo cede a un corpo più caldo utilizzando energia.

A

B

D

C

volume

Lavoro del ciclo

Wciclo = WAB +WBC + WCD + WDA = = Qc + UB Uc Qf + UD UA = Qc Qf

quindi il rendimento della macchina è:

e tenendo conto che

 il rendimento della macchina di Carnot,

“Rendimento di Carnot" è :

Quindi il rendimento dipende soltanto dalle temperature dei due termostati

Si dice “rendimento del secondo principio” di una macchina reale

prof. Biasco - 2001-02


Un altro enunciato del II principio – Il teorema di Carnot un corpo freddo e lo cede a un corpo più caldo utilizzando energia.

Il teorema di Carnot

 1-    Tutte le macchine reversibili che lavorano tra le stesse temperature hanno lo stesso rendimento

2- Nessuna macchina irreversibile può avere un rendimento superiore a quello di una macchina reversibile che lavora tra le stesse temperature.

Proviamo a spiegare il 1° punto con uno schema, ragionando per assurdo. 

La Macchina 1 reversibile produce lavoro rendimento = 40%

la Macchina 2 reversibile è usata come frigorigena rendimento 30%

prof. Biasco - 2001-02


Termostato caldo Tc un corpo freddo e lo cede a un corpo più caldo utilizzando energia.

Qc = 100 J

Qc= 100 J

W= 40 J

W’=30 J

Macchina 1 reversibile

40%

Macchina 2 reversibile

30%

Energia

10 J

Qf= 60 J

Qf= 70 J

Termostato freddo Tf

il funzionamento complessivo è rappresentato nello schema seguente:

prof. Biasco - 2001-02


Termostato caldo Tc un corpo freddo e lo cede a un corpo più caldo utilizzando energia.

M 1

M 2

Termostato freddo Tf

il funzionamento complessivo è rappresentato nello schema seguente:

Termostato caldo Tc

Macchine

1 + 2

W = 10 J

Qf = 10 J

Termostato freddo Tf

Come è possibile? è rispettato il II principio?

prof. Biasco - 2001-02


8. un corpo freddo e lo cede a un corpo più caldo utilizzando energia. Un ultimo aspetto del II Principio: L’ Entropia

  •  Il secondo principio afferma che le trasformazioni spontanee avvengono solo in un verso.

  • energia meccanica calore,

  • il caffè bollente si raffredda,

  • Mettendo a contatto due corpi, uno caldo e l’altro freddo, il calore fluisce sempre dal corpo caldo al freddo.

  • Esistono altre trasformazione irreversibili: un vetro che va in frantumi, il mescolamento di due sostanze diverse, ecc…….

E’ proprio vero che i fenomeni spontanei avvengono solo in un verso? È possibile che sia proprio così? Che cosa vuol dire?

prof. Biasco - 2001-02


Consideriamo il caffè che si raffredda: un corpo freddo e lo cede a un corpo più caldo utilizzando energia.

1-     Caffè caldo: l’energia termica è concentrata nel volume della tazzina,

Stato di maggiore ordine

2-    Caffè raffreddato: l’energia termica si è dispersa in tutta la stanza, Stato di maggiore disordine

prof. Biasco - 2001-02


Azoto un corpo freddo e lo cede a un corpo più caldo utilizzando energia.

Ossigeno

Azoto Ossigeno

Ossigeno Azoto

Consideriamo due gas che si mescolano:

Stato iniziale A: i due gas sono separati – Stato di maggior ordine

Stato finale B: i due gas sono mescolati – Stato di maggior disordine

prof. Biasco - 2001-02


Quindi in tutti i processi irreversibili ( un corpo freddo e lo cede a un corpo più caldo utilizzando energia. i processi spontanei sono sempre in qualche misura irreversibili) il sistema passa da uno stato più ordinato a uno stato di maggiore disordine.

Lord Kelvin ne concluse che tutti i moti finiranno per l’arrestarsi e, a causa degli scambi di calore, tutte le temperature si uguaglieranno, ciò porterà alla “morte termica” dell’universo.

L’Entropia (e disordine)

Quando un sistema passa da uno Stato A ad uno Stato B (in modo reversibile) la variazione d’entropia è data dal rapporto tra il calore scambiato e la temperatura alla quale viene scambiato.

prof. Biasco - 2001-02


L'entropia S è una funzione termodinamica di stato che misura la quantità di cambiamento di un sistema ed anche il suo disordine.

Essendo variabile di stato il suo valore dipende solo dallo stato in cui si trova il sistema e non dal modo in cui è pervenuto.

Analogamente la variazione d’entropia S dipende solo dagli stati iniziale e finale del sistema. Per cui se una trasformazione non è reversibile possiamo calcolarne la variazione d’entropia mediante una trasformazione reversibile equivalente, avente cioè gli stessi stati iniziale e finale.

(S rappresenta la quantità di calore che viene scambiata per grado kelvin)

prof. Biasco - 2001-02


Q > 0 misura la quantità di cambiamento di un sistema ed anche il suo disordine.

Q < 0

SISTEMA

Se il calore viene fornito al sistema Q > 0 l’entropia del sistema aumenta Ssistema > 0.

SISTEMA

Se il calore viene sottratto al sistema Q < 0 l’entropia del sistema diminuisce Ssistema < 0.

prof. Biasco - 2001-02


Esempio 1 misura la quantità di cambiamento di un sistema ed anche il suo disordine. - Il passaggio di calore da un corpo caldo ad uno freddo è un processo spontaneo irreversibile in cui si verifica un aumento dell’entropia dell’universo e un aumento del disordine.

Tc = 576 K Tf = 305 K Q = 1050 J

Termostato caldo Tc

Variazione d’entropia termostato caldo

Q

Variazione d’entropia termostato freddo

Termostato freddo Tf

Variazione d’entropia dell’universo

L’entropia dell’universo è aumentata.

prof. Biasco - 2001-02


Gas misura la quantità di cambiamento di un sistema ed anche il suo disordine.

Gas

Vuoto

Vuoto

Gas

Gas

Esempio 2 Anche nell’esempio seguente si ha un processo spontaneo irreversibile: il gas contenuto nel vano di sinistra si espande liberamente fino ad occupare tutto il volume disponibile.

Nella fig. il dispositivo è costituito da due recipienti collegati tra loro e isolati dall’esterno da materiale adiabatico. Quando viene aperto il rubinetto il gas si espande liberamente in condizioni adiabatiche.

Stato iniziale A

pA, VA, TA

Stato finale B

pB = ½ pA; VB = 2 VA, TB =TA=T

prof. Biasco - 2001-02


Gas misura la quantità di cambiamento di un sistema ed anche il suo disordine.

Gas

A

B

Trasformazione A  B

  Q = 0; W = 0 (espansione libera) U = Q  W = 0 U = 0  TA = TB

 La trasformazione A  B è equivalente all’espansione isoterma in figura

In cui W = Q = Q = nRT lnVB/VA = nRT ln2> 0

prof. Biasco - 2001-02


Sistemi Viventi ed Entropia misura la quantità di cambiamento di un sistema ed anche il suo disordine..

I sistemi viventi, come sappiamo, sono in grado di organizzare materiale grezzo e produrre strutture organizzate anche molto complesse:

L’embrione utilizza le sostanze nutritive per svilupparsi in un individuo completo.

Le piante utilizzano l’energia del sole, l’anidride carbonica e i nutrienti contenuti nel terreno per svilupparsi in strutture complesse.

Negli esempi precedenti e in tutti i sistemi viventi si osserva un aumento dell’ordine e quindi una diminuzione dell’entropia. Tuttavia, se teniamo conto che gli organismi viventi per vivere e svilupparsi devono utilizzare energia, vedremo che anche in questi casi l’entropia totale del Sistema + Ambiente, cioè l’entropia dell’universo, aumenta sempre.

prof. Biasco - 2001-02


Ludwig Boltzmann approfondì lo studio della teoria dell’irreversibilità giungendo alla conclusione che essa non è una legge assoluta della fisica, ma una legge statistica;

Cioè in ogni processo spontaneo ……

prof. Biasco - 2001-02


Entropia dell’irreversibilità giungendo alla conclusione che essa non è una legge assoluta della fisica, ma una legge statistica; (e probabilità)

…. possiamo dire che il sistema passa da uno stato meno probabile ad uno con maggiore probabilità.

Chiariamo questo aspetto: consideriamo un recipiente contente del gas diviso in due vani comunicanti.

La probabilità che tutto il gas si trovi nel primo vano “evento A” è molto bassa

prof. Biasco - 2001-02


Esaminiamo il caso di 4 molecole contenute in una scatola suddivisa in due parti: vano sinistro S e vano destro D

Clicca sull’immagine

prof. Biasco - 2001-02


Tutte le possibili disposizioni ( suddivisa in due parti: vano sinistro S e vano destro Dmicrostati) sono riportate in tabella

Le disposizioni possibili sono 2 4 = 16

Ma le configurazioni sono solo 5

1°-SSSS1 molteplicità

2°–SSSD 4 molteplicità

3°–SSDD 6 molteplicità

4°–SDDD 4 molteplicità

5°– DDDD 1 molteplicità

prof. Biasco - 2001-02


1°- suddivisa in due parti: vano sinistro S e vano destro DSSSS molteplicità W = 1 P = 1/16 = 6,25%

2°– SSSD molteplicità W = 4 P = 4/16 = 25%

3°– SSDD molteplicità W = 6 P = 6/16 = 37,5%

4°– SDDD molteplicità W = 4 P = 4/16 = 25%

5°– DDDD molteplicità W = 1 P = 1/16 = 6,25%

prof. Biasco - 2001-02


Nel caso precedente la probabilità che le 4 molecole siano tutte nel vano di sinistra è del 6,25% mentre che siano distribuite equamente è del 37,5%

Cioè 1 caso a sinistra / 6 casi distribuzione uniforme

Nel caso di 100 molecole il rapporto è circa 1 caso a sinistra / 1029 circa distribuzione uniforme

Nel caso di una mole, 6,022 1023 molecole, la probabilità della distribuzione “uniforme” tra i due vani è enorme

Allora

Osservazione

Possiamo anche dire che, nelle trasformazioni spontanee, il sistema passa sempre da uno stato meno probabile ad uno di maggiore probabilità.

prof. Biasco - 2001-02


L’equazione dell’entropia di Boltzmann tutte nel vano di sinistra è del 6,25% mentre che siano distribuite equamente è del 37,5%, permette di calcolare l’entropia di uno stato del sistema in relazione alla sua probabilità:

S = k lnW

k = 1,38 1023 J/K costante di Boltzmann W = Molteplicità della configurazione, numero di permutazioni della configurazione.

prof. Biasco - 2001-02


Calcoliamo l’Entropia delle configurazioni delle 4 molecole

1°- SSSS molteplicità W = 1S1 = k ln 1 = 0 J/K

2°– SSSD molteplicità W = 4S2 = k ln 4 = 1,91 10-23 J/K

3°– SSDD molteplicità W = 6S3 = k ln 6= 2,47 10-23 J/K

4°– SDDD molteplicità W = 4S4 = k ln 4 = 1,91 10-23 J/K

5°– DDDD molteplicità W = 1S5 = k ln 1 = 0 J/K

prof. Biasco - 2001-02


Poiché le distribuzioni sono tutte equiprobabili, nel caso delle 4 molecole, considerato un intervallo di tempo di 16 secondi, possiamo dire che mediamente (in termini statistici) il sistema si troverà nello stato SSSS per 1 sec, nello stato SSSD per 4 sec, nello stato SSDD per 6 sec, ……

Quindi le distribuzioni SSSS o DDDD non sono impossibili, sono solo meno probabili.

Ma nel caso di 100 molecole il sistema si troverà nello stato “tutte le molecole nel vano di sinistra”, probabilità (1/2)100 = 7,9 10–31, mediamente (in senso statistico) per 1 secondo in un intervallo di tempo della durata di circa 1,27 1030 secondi circa 9,65 1014 miliardi di anni.

Allora il II principio non dice che certi eventi sono impossibili, ma solo estremamente improbabili.

prof. Biasco - 2001-02


Un ultimo enunciato del II principio delle 4 molecole, considerato un intervallo di tempo di 16 secondi, possiamo dire che mediamente– Entropia

Una trasformazione irreversibile, che inizia e termina in stati di equilibrio, si svolge sempre nel verso in cui si verifica un aumento dell’entropia del Sistema + Ambiente

S universo = Ssistema + Sambiente > 0

Se la trasformazione è reversibileS universo = 0

prof. Biasco - 2001-02


A delle 4 molecole, considerato un intervallo di tempo di 16 secondi, possiamo dire che mediamente

A

B

B

S sistema = Sciclo = Sf  Si = 0

Pressione

Pressione

volume

volume

ENTROPIA DELL’UNIVERSO (non diminuisce mai)

Facciamo alcune utili considerazioni sull’entropia delle trasformazioni termodinamiche reversibili e irreversibili:

  • In un CICLO Reversibile o Irreversibile

  • La variazione d’entropia del SISTEMA è sempre ZERO.

Sciclo = SA  SA = 0

Sciclo = SA  SA = 0

prof. Biasco - 2001-02


A delle 4 molecole, considerato un intervallo di tempo di 16 secondi, possiamo dire che mediamente

A

B

B

Pressione

Pressione

S universo = Ssistema + Sambiente = 0

volume

volume

  • In un CICLO o in una TRASFORMAZIONE REVERSIBILI

  • La variazione d’entropia dell’ UNIVERSO è sempre ZERO.

 Ssist = 0; SU = 0

 Ssist > 0; SU = 0

prof. Biasco - 2001-02


A delle 4 molecole, considerato un intervallo di tempo di 16 secondi, possiamo dire che mediamente

A

S universo = Ssistema + Sambiente > 0

B

B

Pressione

Pressione

volume

volume

  • In un CICLO o in una TRASFORMAZIONE IRREVERSIBILI

  • La variazione d’entropia dell’ UNIVERSO è sempre maggiore di ZERO.

 Ssist = 0; SU > 0

 Ssist > 0; SU > 0

prof. Biasco - 2001-02


W delle 4 molecole, considerato un intervallo di tempo di 16 secondi, possiamo dire che mediamenteperduto = TfSuniverso = Q(1 Tf/Tc)

Oss. In un processo IRREVERSIBILE la quantità di energia perduta viene trasformata in modo da non poter essere più utilizzata

ed è data dall’equazione seguente:

prof. Biasco - 2001-02


Il 3° Principio della Termodinamica delle 4 molecole, considerato un intervallo di tempo di 16 secondi, possiamo dire che mediamente

E’ impossibile abbassare la temperatura di un corpo fino allo zero assoluto mediante un numero finito di passi.

Sperimentalmente è sempre possibile avvicinarsi sempre più allo zero assoluto, ma è impossibile raggiungerlo.

prof. Biasco - 2001-02


Bibliografia delle 4 molecole, considerato un intervallo di tempo di 16 secondi, possiamo dire che mediamente

  • Tipler - Invito alla fisica B - Zanichelli 1998

  • Walker - Fisica B - Zanichelli 2004

  • Halliday- Resnick- Walker - Fondamenti di fisica, termologia - Zanichelli 2001

  • Resnick - Halliday - Fisica - Ambrosiana Milano 1970

  • Feynman - La fisica di Feynman - 2001 Zanichelli Bologna

prof. Biasco - 2001-02


ad