Combinations
This presentation is the property of its rightful owner.
Sponsored Links
1 / 6

Combinations PowerPoint PPT Presentation


  • 43 Views
  • Uploaded on
  • Presentation posted in: General

Combinations. The combination key (nCr) is located under the math probability menu. Enter the number of objects, n, first; then the combination key; then the number of objects to take at one time, r. C(10,5) = 10C5 = 10 MATH PRB 3 5. Combination.

Download Presentation

Combinations

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -

Presentation Transcript


Combinations

Combinations

  • The combination key (nCr) is located under the math probability menu. Enter the number of objects, n, first; then the combination key; then the number of objects to take at one time, r.

  • C(10,5) = 10C5 = 10 MATH PRB 3 5


Combination

Combination

  • Sometimes, combinations need combined with the fundamental counting principle. This can easily be done one the calculator.

  • Example: How many ways can five women be selected from ten women and three men selected from eight men? The solution is shown below. The parentheses are optional, but it is suggested you use them for clarification

  • ( 10 nCr 5 ) * ( 8 nCr 3 )


Factorials

Factorials

  • The factorial (!) key is located under the math probability menu. Enter the number first, then the factorial key.

  • 10! = 10 MATH PRB 4


Factorial

Factorial

  • factorial notation: the notation, n!, used to represent the product of the first n natural numbers. n! is read as “n factorial.”

  • For example,

  • n! = n × (n - 1) × (n - 2) × (n - 3) × ... × 3 × 2 × 1

  • Note: By definition, 0! = 1. Another thing you must remember is that n! is only defined if n is a whole number. This means numbers like 1.5! and (-2)! are undefined.

  • Principle: The number of distinguishable permutations of n objects, of which a objects are identical, another b objects are identical, and another c objects are identical, and so on, is


Factorial1

Factorial

  • Note: By definition, 0! = 1. Another thing you must remember is that n! is only defined if n is a whole number. This means numbers like 1.5! and (-2)! are undefined.

  • Principle: The number of distinguishable permutations of n objects, of which a objects are identical, another b objects are identical, and another c objects are identical, and so on, is


  • Login