1 / 33

Compressed baryonic matter - Experiments at GSI and at FAIR

Compressed baryonic matter - Experiments at GSI and at FAIR. Peter Senger (GSI). Outline: Probing dense baryonic matter (1-3 ρ 0 )  The nuclear equation-of-state  In medium properties of strange mesons Towards highest baryon densities (3-10 ρ 0 )

adriel
Download Presentation

Compressed baryonic matter - Experiments at GSI and at FAIR

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Compressed baryonic matter - Experiments at GSI and at FAIR Peter Senger (GSI) Outline: Probing dense baryonic matter (1-3 ρ0) The nuclear equation-of-state In medium properties of strange mesons Towards highest baryon densities (3-10 ρ0)  Exploring the phases of QCD matter Dense Matter In Heavy Ion Collisions and Astrophysics, August 2006, Dubna

  2. Birth and death of stars 8M M  15M Supernova II 1.4M Mcore 2M neutron star M  8M red giant white dwarf M 15M Supernova IIa M  2M black hole

  3. The Crab nebula ...... and his pulsating heart In 1054 chinese astronomers observed a “visiting star”: As bright as the full moon for 1 month glowing remnant of a core collapse supernova: distance from earth about 7000 light years diameter about ca. 10 light years, expansion about 1000 Km/s. 1968/69: discovery of a pulsating radiation source (30 Hz) Rotating neutron star with strong magnetic field Synchrotron radiation from high energy electrons

  4. no pulsar observed up to now ! Supernova 1987: near the Tarantula nebula in the Large Magellanic Cloud

  5. Measured neutron star masses Compiled by S. Thorsett, Princeton Univ. 1997 more than 1500 pulsars known best determined mass: M = (1.4411  0.00035)M (Hulse-Taylor-Pulsar) shortest rotation period: 1.557 ms (PSR 1937+21)

  6. Strongly interacting matter in neutron stars neutron star core with correlated qq pairs: color superconductivity qq “Strangeness" of dense matter ? In-medium properties of hadrons ? Compressibility of nuclear matter? Deconfinement at high baryon densities ? nucleon star: kaon condensate F. Weber J.Phys. G27 (2001) 465

  7. Extreme states of strongly interacting matter baryons hadrons partons Compression + heating = quark-gluon matter (pion production) Au-nucleus: R  7 fm, V  1400 fm3 Nucleon: R  0.8 fm, V  2 fm3 200 Nucleons: V  400 fm3 At 3 – 4 ρ0: nucleons overlap Neutron stars Early universe

  8. The evolution of matter in the universe 15 billion years 3 K Where are the antiparticles ? 1 billion years 20 K 3000 K time 300.000 years temperature 3 minutes 109 K 1 millisecond 1012 K The soup of the first millisecond: quarks, antiquarks, electrons, positrons, gluons, photons Distanz

  9. Mapping the QCD phase diagram with heavy-ion collisions

  10. High energy Au+Au collisions in transport calculations B. Friman, W. Nörenberg, V.D. Toneev Eur. Phys. J. A3 (1998) 165 For beam energies < 50 A GeV fireball lifetimes > 3 fm/c

  11. The quest for the equation-of-state of dense nuclear matter Info on the EOS is relevant for: • dynamics of core-collapse supernova (ρ < 3 ρ0) • neutron star stability (ρ > 3 ρ0) Experimental approaches: • pion yield in A+A collisions (R.Stock) • collective flow in A+A collisions • kaon production in A+A collisions

  12. Determination of the Equation of State of dense matter from collective flow of particles P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592 directed transverse flow

  13. Determination of the Equation of State of dense matter from collective flow of particles P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592 elliptic flow dN/dF  (1 + 2v1cosF + 2v2 cos2F)

  14. Zero temperature EOS P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592 pressure versus density shaded areas are consistent with experimental flow results No firm conclusion on EOS, problems due to:  momentum dependent interactions  no cluster formation in transport

  15. Kaon production in Au+Au collisions at 1 AGeV K+ mesons probe high densities

  16. The creation of strange mesons u d u u d s L p u d d u d d n K+ n s u s u K+ K- s u u d u u d u p d d u n p d d u n u d s u d u u d d u d s p S0 L n u u s u K- d u s u p0 K+ p+ K-absorption

  17. Probing the nuclear equation-of-state at high density by K+ meson production in C+C and Au+Au collisions C. Sturm et al., Phys. Rev. Lett. 86 (2001) 39 Idea: K+ yield  baryon density ρ  compressibility κ Au+Au at 1 AGeV (RBUU): soft eos ρmax 2.9 ρ0  K+ yield up hard eos  ρmax 2.4 ρ0  K+ yield down but: in C+C no influence of eos on K+ yield !

  18. QMD transport calculations • C. Fuchs et al., Phys.Rev.Lett. 86 (2001) 1974

  19. The compressibility of nuclear matter Experiment: C. Sturm et al., Phys. Rev. Lett. 86 (2001) 39 Theory: QMD C. Fuchs et al., Phys. Rev. Lett. 86 (2001) 1974 IQMD Ch. Hartnack, J. Aichelin, J. Phys. G 28 (2002) 1649 Figure by C. Fuchs soft equation-of-state: k = 200 MeV

  20. K mesons in dense matter (I) G.E Brown, C.H. Lee, M. Rho, V. Thorsson, Nucl. Phys. A 567 (1994) 937 T. Waas, N. Kaiser, W. Weise, Phys. Lett. B 379 (1996) 34 J. Schaffner-Bielich, J. Bondorf, I. Mishustin , Nucl. Phys. A 625 (1997) How to measure in-medium modifications of kaons in heavy-ion collisions?  yield at subthreshold beam energies repulsive K+N and attractive K-N potential: angular distributions

  21. In-medium modifications of K+ mesons Data: M. Menzel et al., KaoS Collab., Phys. Lett. B 495 (2000) 26 K. Wisniewski et al., FOPI Collab., Eur. Phys. J A 9 (2000) 515 Figure by C. Fuchs

  22. K+ azimuthal emission pattern from A+A collisions Data: Y. Shin et al., Phys. Rev. Lett. 81 (1998) 1576 F. Uhlig et al., Phys.Rev.Lett. 95 (2005) 012301 Theory: A. Larionov, U. Mosel, nucl-th/0504023 Evidence for repulsive K+N interaction !

  23. e- K-+ne K mesons in dense matter (II) G.E Brown, C.H. Lee, M. Rho, V. Thorsson, Nucl. Phys. A 567 (1994) 937 T. Waas, N. Kaiser, W. Weise, Phys. Lett. B 379 (1996) 34 J. Schaffner-Bielich, J. Bondorf, I. Mishustin , Nucl. Phys. A 625 (1997) K- condensation in neutron stars (e- K-+νe, n  p + K-) ? G.E. Brown, H.A. Bethe, Astrophys. Jour. 423 (1994) 659 G.Q.Li, C.H. Lee, G.E. Brown , Nucl. Phys. A 625 (1997)

  24. Enhanced antikaon production in A+A collisions F. Laue, C. Sturm et al., Phys. Rev. Lett. 82 (1999) 1640 M. Menzel et al., Phys. Lett. B 495 (2000) 26 Parameterization: A.Sibirtsev, W. Cassing, C.M. Ko, Z. Phys. A 258 (1997) 101 Enhancement due to:  Strangeness exchange reactions pLK-N ? Attractive in-medium K-N potential ?

  25. Ni+Ni at 1.93 AGeV: π, K+ and K- azimuthal distributions F. Uhlig et al., Phys. Rev. Lett. 95 (2005) 012301 3.8 fm < b < 6.4 fm 0.4 < y/ybeam <0.6 0.2 GeV < p┴< 0.8 GeV IQMD Calculation:C. Hartnack et al.

  26. Au+Au 1.5 AGeV semi-central collisions (b > 6.4 fm) K+ and K- azimuthal angular distributions M. Płoskon, PhD Thesis 2005 dN(φ)/φ 1 + 2v1cos(φ) + 2v2cos(2φ) + ...

  27. K mesons in dense matter (III): In-medium spectral functions of K-,  (1405) and  (1385) L(1405) K- K- N-1 M. Lutz, C. Korpa, Nucl. Phys. A 700 (2002) 309 self-consistent coupled channel calculation (s,p,d waves) L. Tolos et al., NPA 690 (2001) 547 coupled channel G-Matrix approach:

  28. Off-shell transport calculations (HSD code) W. Cassing et al., NPA 727 (2003) 59 delayed K- production via strangeness exchange reactions which are enhanced due to in-medium modifications of hyperons

  29. Elliptic flow of K+ and K- mesons: Comparison to off-shell transport calculations and in-medium spectral functions Data: M. Płoskon, PhD Thesis, Univ. Frankfurt 2005 Off-shell transport calculations: W. Cassing et al., NPA 727 (2003) 59, E. Bratkovskaya, priv. com. Coupled channel G-Matrix approach (K- spectral functions): L. Tolos et al., NPA 690 (2001) 547 dN(φ)/φ 1 + 2v1cos(φ) + 2v2cos(2φ) + ...

  30. Summary and outlook (part I) Probing dense baryonic matter (1-3 ρ0) with kaons: Excitation function of K+ production in A+A collisions:  The nuclear matter equation-of-state is soft (K  200 MeV) Yield and elliptic flow of K+ mesons: The in-medium potential of K+ mesons is repulsive Yield and elliptic flow of K- mesons: Quantitative interpretation of data requires off-shell transport calculations and in-medium spectral functions

  31. The Kaon Spectrometer at SIS (1991 – 2002) Collaboration GSI Darmstadt: P. Koczoń, F. Laue, M. Płoskon, E. Schwab, P Senger, C. Sturm TU Darmstadt: A. Förster, S. Lang, H. Oeschler, A. Schmah, F. Uhlig Univ. Frankfurt: Y. Shin, T. Schuck, H. Ströbele Univ. Marburg: I. Böttcher, B. Kohlmeyer, M. Menzel Univ. Kraków: M. Dębowski, G. Surówka,W. Waluś FZ Rossendorf: F. Dohrmann, E. Grosse, L. Naumann, W. Scheinast, W. Wagner

More Related