1 / 29

Applying First-Order Theorem Provers in Formal Software Safety Certification

Applying First-Order Theorem Provers in Formal Software Safety Certification. Joint work with E. Denney and J. Schumann, NASA Ames Research Center. Our view of ATPs…. … but sometimes. Vampire. Disclaimer. Keep in mind that… … we are ATP users, not developers

adonia
Download Presentation

Applying First-Order Theorem Provers in Formal Software Safety Certification

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Applying First-Order Theorem Proversin Formal Software Safety Certification Joint work with E. Denney and J. Schumann,NASA Ames Research Center

  2. Our view of ATPs… … but sometimes Vampire Disclaimer Keep in mind that… … we are ATP users, not developers … we are not looking for proofs but for assurance … we consider ATPs a “necessary evil” :-)

  3. Code Generator = DSL Compiler Initial model (DSL program): . . . model landsat as ‘Landsat Clustering’. const nat N as ‘number of pixels’. const nat B as ‘number of bands’. const nat C := 5 as ‘number of classes’ where C << N. double phi(1..N) as ‘class weights’ where 1 = sum(I := 1..C, phi(I)). double mu(1..C), sig(1..C) where 0 < sig(_). int c(1..N) as ‘class assignments’. c(_) ~ discrete(phi). data double x(1..N, 1..B) as ‘pixels’. x(I,_) ~ gauss(mu(c(I)), sig(c(I))). max pr(x | {phi,mu,sig}) for {phi,mu,sig}. • Ground cover map: • multiple Landsat-bands • estimate pixel classes • estimate class parameters • Implementation problems: • which model? • which algorithm? • efficient C/C++ code? • correctness? Model refinements: sig(_) ~ invgamma(delta/2+1,sig0*delta/2). Model changes: x(I,_) ~ cauchy(mu(c(I)), sig(c(I))). x(I,_) ~ mix(c(I) cases 1 -> gauss(0, error), _ -> cauchy(mu(c(I)),sig(c(I)))).

  4. //----------------------------------------------------------------------------//---------------------------------------------------------------------------- // Code file generated by AutoBayes V0.0.1 // (c) 1999-2004 ASE Group, NASA Ames Research Center // Problem: Mixture of Gaussians // Source: examples/cover.ab // Command: ./autobayes // examples/cover.ab // Generated: Wed Mar 10 16:07:54 2004 //---------------------------------------------------------------------------- #include "autobayes.h" //---------------------------------------------------------------------------- // Octave Function: cover //---------------------------------------------------------------------------- DEFUN_DLD(cover,input_args,output_args, "") { octave_value_list retval; if (input_args.length () != 4 || output_args != 3 ){ octave_stdout << "wrong usage"; return retval; } //-- Input declarations ---------------------------------------------------- // Number of classes octave_value arg_n_classes = input_args(0); if (!arg_n_classes.is_real_scalar()){ gripe_wrong_type_arg("n_classes", (const string &)"Scalar expected"); return retval; } double n_classes = (double)(arg_n_classes.double_value()); octave_value arg_x = input_args(1); if (!arg_x.is_real_matrix()){ gripe_wrong_type_arg("x", (const string &)"Matrix expected"); return retval; } Matrix x = (Matrix)(arg_x.matrix_value()); // Iteration tolerance for convergence loop octave_value arg_tolerance1 = input_args(2); if (!arg_tolerance1.is_real_scalar()){ gripe_wrong_type_arg("tolerance1", (const string &)"Scalar expected"); return retval; } double tolerance1 = (double)(arg_tolerance1.double_value()); // maximal number of EM iterations octave_value arg_maxiteration = input_args(3); if (!arg_maxiteration.is_real_scalar()){ gripe_wrong_type_arg("maxiteration", (const string &)"Scalar expected"); return retval; } double maxiteration = (double)(arg_maxiteration.double_value()); //-- Constant declarations ------------------------------------------------- // Number of data dimensions int n_dim = arg_x.rows(); // Number of data points int n_points = arg_x.columns(); // tolerance for appr. 600 data points double tolerance = 0.0003; //-- Output declarations --------------------------------------------------- Matrix mu(n_dim, n_classes); ColumnVector rho(n_classes); Matrix sigma(n_dim, n_classes); //-- Local declarations ---------------------------------------------------- // class assignment vector ColumnVector c(n_points); // Label: label0 // class membership table used in Discrete EM-algorithm Matrix q(n_points, n_classes); // local centers used for center-based initialization Matrix center(n_classes, n_dim); // Random index of data point int pick; // Loop variable int pv68; int pv65; int pv66; int pv42; int pv43; int pv13; int pv24; int pv56; int pv80; // Summation accumulator double pv83; double pv84; double pv85; // Lagrange-multiplier double l; // Common subexpression double pv52; // Memoized common subexpression ColumnVector pv58(n_classes); // Common subexpression double pv60; int pv70; int pv69; int pv71; Matrix muold(n_dim, n_classes); ColumnVector rhoold(n_classes); Matrix sigmaold(n_dim, n_classes); int pv73; int pv74; int pv75; int pv76; int pv77; // convergence loop counter int loopcounter; // sum up the Diffs double pv86; // Summation accumulator double pv92; double pv94; double pv95; double pv99; double pv98; double pv100; int pv26; int pv49; int pv48; int pv50; // Product accumulator double pv96; int pv53; int pv55; int pv89; int pv88; int pv87; int pv90; int pv91; // Check constraints on inputs ab_assert( 0 < n_classes ); ab_assert( 10 * n_classes < n_points ); ab_assert( 0 < n_dim ); ab_assert( 0 < n_points ); // Label: label1 // Label: label2 // Label: label4 // Discrete EM-algorithm // // The model describes a discrete latent (or hidden) variable problem with // the latent variable c and the data variable x. The problem to optimize // the conditional probability pr(x | {mu, rho, sigma}) w.r.t. the variables // mu, rho, and sigma can thus be solved by an application of the (discrete) // EM-algorithm. // The algorithm maintains as central data structure a class membership // table q (see "label0") such that q(pv13, pv61) is the probability that // data point pv13 belongs to class pv61, i.e., // q(pv13, pv61) == pr([c(pv13) == pv61]) // The algorithm consists of an initialization phase for q (see "label2"), // followed by a convergence phase (see "label5"). // // Initialization // The initialization is center-based, i.e., for each class (i.e., value of // the hidden variable c) a center value center is chosen first // (see "label4"). Then, the values for the local distribution are // calculated as distances between the data points and these center values // (see "label6"). // // Random initialization of the centers center with data points; // note that a data point can be picked as center more than once. for( pv65 = 0;pv65 <= n_classes - 1;pv65++ ) { pick = uniform_int_rnd(n_points - 1 - 0); for( pv66 = 0;pv66 <= n_dim - 1;pv66++ ) center(pv65, pv66) = x(pv66, pick); } // Label: label6 for( pv13 = 0;pv13 <= n_points - 1;pv13++ ) for( pv68 = 0;pv68 <= n_classes - 1;pv68++ ) { pv83 = 0; for( pv69 = 0;pv69 <= n_dim - 1;pv69++ ) pv83 += (center(pv68, pv69) - x(pv69, pv13)) * (center(pv68, pv69) - x(pv69, pv13)); pv85 = 0; for( pv70 = 0;pv70 <= n_classes - 1;pv70++ ) { pv84 = 0; for( pv71 = 0;pv71 <= n_dim - 1;pv71++ ) pv84 += (center(pv70, pv71) - x(pv71, pv13)) * (center(pv70, pv71) - x(pv71, pv13)); pv85 += sqrt(pv84); } q(pv13, pv68) = sqrt(pv83) / pv85; } // Label: label5 // EM-loop // // The EM-loop iterates two steps, expectation (or E-Step) (see "label7"), // and maximization (or M-Step) (see "label8"); however, due to the form of // the initialization used here, the are ordered the other way around. The // loop runs until convergence in the values of the variables mu, rho, and // sigma is achieved. loopcounter = 0; // repeat at least once pv86 = tolerance1; while( ((loopcounter < maxiteration) && (pv86 >= tolerance1)) ) { loopcounter = 1 + loopcounter; if ( loopcounter > 1 ) { // assign current values to old values for( pv73 = 0;pv73 <= n_dim - 1;pv73++ ) for( pv74 = 0;pv74 <= n_classes - 1;pv74++ ) muold(pv73, pv74) = mu(pv73, pv74); for( pv75 = 0;pv75 <= n_classes - 1;pv75++ ) rhoold(pv75) = rho(pv75); for( pv76 = 0;pv76 <= n_dim - 1;pv76++ ) for( pv77 = 0;pv77 <= n_classes - 1;pv77++ ) sigmaold(pv76, pv77) = sigma(pv76, pv77); } else ; // Label: label8 label3 // M-Step // // Decomposition I // The problem to optimize the conditional probability pr({c, x} | {mu, // rho, sigma}) w.r.t. the variables mu, rho, and sigma can under the // given dependencies by Bayes rule be decomposed into two independent // subproblems: // max pr(c | rho) for rho // max pr(x | {c, mu, sigma}) for {mu, sigma} // The conditional probability pr(c | rho) is under the dependencies // given in the model equivalent to // prod([pv17 := 0 .. n_points - 1], pr(c(pv17) | rho)) // The probability occuring here is atomic and can thus be replaced by // the respective probability density function given in the model. // Summing out the expected variable c(pv13) yields the log-likelihood // function // sum_domain([pv13 := 0 .. n_points - 1], // [pv18 := 0 .. n_classes - 1], [c(pv13)], q(pv13, pv18), // log(prod([pv17 := 0 .. n_points - 1], rho(c(pv17))))) // which can be simplified to // sum([pv18 := 0 .. n_classes - 1], // log(rho(pv18)) * sum([pv17 := 0 .. n_points - 1], q(pv17, pv18))) // This function is then optimized w.r.t. the goal variable rho. // The expression // sum([pv18 := 0 .. n_classes - 1], // log(rho(pv18)) * sum([pv17 := 0 .. n_points - 1], q(pv17, pv18))) // is maximized w.r.t. the variable rho under the constraint // 1 == sum([pv23 := 0 .. n_classes - 1], rho(pv23)) // using the Lagrange-multiplier l. l = n_points; for( pv24 = 0;pv24 <= n_classes - 1;pv24++ ) { // The summand // l // is constant with respect to the goal variable rho(pv24) and can // thus be ignored for maximization. The function // sum([pv18 := 0 .. n_classes - 1], // log(rho(pv18)) * // sum([pv17 := 0 .. n_points - 1], q(pv17, pv18))) - // l * sum([pv23 := 0 .. n_classes - 1], rho(pv23)) // is then symbolically maximized w.r.t. the goal variable rho(pv24). // The differential // sum([pv17 := 0 .. n_points - 1], q(pv17, pv24)) / rho(pv24) - l // is set to zero; this equation yields the solution // sum([pv26 := 0 .. n_points - 1], q(pv26, pv24)) / l pv92 = 0; for( pv26 = 0;pv26 <= n_points - 1;pv26++ ) pv92 += q(pv26, pv24); rho(pv24) = pv92 / l; } // The conditional probability pr(x | {c, mu, sigma}) is under the // dependencies given in the model equivalent to // prod([pv32 := 0 .. n_dim - 1, pv33 := 0 .. n_points - 1], // pr(x(pv32, pv33) | {c(pv33), mu(pv32, *), sigma(pv32, *)})) // The probability occuring here is atomic and can thus be replaced by // the respective probability density function given in the model. // Summing out the expected variable c(pv13) yields the log-likelihood // function // sum_domain([pv13 := 0 .. n_points - 1], // [pv34 := 0 .. n_classes - 1], [c(pv13)], q(pv13, pv34), // log(prod([pv32 := 0 .. n_dim - 1, // pv33 := 0 .. n_points - 1], // exp((x(pv32, pv33) - mu(pv32, c(pv33))) ** 2 / // -2 / sigma(pv32, c(pv33)) ** 2) / // (sqrt(2 * pi) * sigma(pv32, c(pv33)))))) // which can be simplified to // -((n_dim * n_points * (log(2) + log(pi)) + // sum([pv33 := 0 .. n_points - 1, pv34 := 0 .. n_classes - 1], // q(pv33, pv34) * // sum([pv32 := 0 .. n_dim - 1], // (x(pv32, pv33) - mu(pv32, pv34)) ** 2 / // sigma(pv32, pv34) ** 2))) / 2 + // sum([pv34 := 0 .. n_classes - 1], // sum([pv32 := 0 .. n_dim - 1], log(sigma(pv32, pv34))) * // sum([pv33 := 0 .. n_points - 1], q(pv33, pv34)))) // This function is then optimized w.r.t. the goal variables mu and // sigma. // The summands // n_dim * n_points * log(2) / -2 // n_dim * n_points * log(pi) / -2 // are constant with respect to the goal variables mu and sigma and can // thus be ignored for maximization. // Index decomposition // The function // -(sum([pv33 := 0 .. n_points - 1, pv34 := 0 .. n_classes - 1], // q(pv33, pv34) * // sum([pv32 := 0 .. n_dim - 1], // (x(pv32, pv33) - mu(pv32, pv34)) ** 2 / // sigma(pv32, pv34) ** 2)) / 2 + // sum([pv34 := 0 .. n_classes - 1], // sum([pv32 := 0 .. n_dim - 1], log(sigma(pv32, pv34))) * // sum([pv33 := 0 .. n_points - 1], q(pv33, pv34)))) // can be optimized w.r.t. the variables mu(pv42, pv43) and // sigma(pv42, pv43) element by element (i.e., along the index variables // pv42 and pv43) because there are no dependencies along thats dimensions. for( pv42 = 0;pv42 <= n_dim - 1;pv42++ ) for( pv43 = 0;pv43 <= n_classes - 1;pv43++ ) // The factors // n_classes // n_dim // are non-negative and constant with respect to the goal variables // mu(pv42, pv43) and sigma(pv42, pv43) and can thus be ignored for // maximization. // The function // -(log(sigma(pv42, pv43)) * // sum([pv33 := 0 .. n_points - 1], q(pv33, pv43)) + // sum([pv33 := 0 .. n_points - 1], // (x(pv42, pv33) - mu(pv42, pv43)) ** 2 * q(pv33, pv43)) / // (2 * sigma(pv42, pv43) ** 2)) // is then symbolically maximized w.r.t. the goal variables // mu(pv42, pv43) and sigma(pv42, pv43). The partial differentials // df / d_mu(pvar(42), pvar(43)) == // (sum([pv33 := 0 .. n_points - 1], // q(pv33, pv43) * x(pv42, pv33)) - // mu(pv42, pv43) * // sum([pv33 := 0 .. n_points - 1], q(pv33, pv43))) / // sigma(pv42, pv43) ** 2 // df / d_sigma(pvar(42), pvar(43)) == // sum([pv33 := 0 .. n_points - 1], // (x(pv42, pv33) - mu(pv42, pv43)) ** 2 * q(pv33, pv43)) / // sigma(pv42, pv43) ** 3 - // sum([pv33 := 0 .. n_points - 1], q(pv33, pv43)) / // sigma(pv42, pv43) // are set to zero; these equations yield the solutions // mu(pv42, pv43) == // cond(0 == sum([pv46 := 0 .. n_points - 1], q(pv46, pv43)), // fail(division_by_zero), // sum([pv48 := 0 .. n_points - 1], // q(pv48, pv43) * x(pv42, pv48)) / // sum([pv47 := 0 .. n_points - 1], q(pv47, pv43))) // sigma(pv42, pv43) == // cond(0 == sum([pv49 := 0 .. n_points - 1], q(pv49, pv43)), // fail(division_by_zero), // sqrt(sum([pv50 := 0 .. n_points - 1], // (x(pv42, pv50) - mu(pv42, pv43)) ** 2 * // q(pv50, pv43)) / // sum([pv51 := 0 .. n_points - 1], q(pv51, pv43)))) { // Initialization of common subexpression pv52 = 0; for( pv49 = 0;pv49 <= n_points - 1;pv49++ ) pv52 += q(pv49, pv43); if ( 0 == pv52 ) { ab_error( division_by_zero ); } else { pv94 = 0; for( pv48 = 0;pv48 <= n_points - 1;pv48++ ) pv94 += q(pv48, pv43) * x(pv42, pv48); mu(pv42, pv43) = pv94 / pv52; } if ( 0 == pv52 ) { ab_error( division_by_zero ); } else { pv95 = 0; for( pv50 = 0;pv50 <= n_points - 1;pv50++ ) pv95 += (x(pv42, pv50) - mu(pv42, pv43)) * (x(pv42, pv50) - mu(pv42, pv43)) * q(pv50, pv43); sigma(pv42, pv43) = sqrt(pv95 / pv52); } } // Label: label7 // E-Step // Update the current values of the class membership table q. for( pv13 = 0;pv13 <= n_points - 1;pv13++ ) { // Initialization of common subexpression for( pv56 = 0;pv56 <= n_classes - 1;pv56++ ) { pv96 = 1; for( pv53 = 0;pv53 <= n_dim - 1;pv53++ ) pv96 *= exp((x(pv53, pv13) - mu(pv53, pv56)) * (x(pv53, pv13) - mu(pv53, pv56)) / (double)(-2) / (sigma(pv53, pv56) * sigma(pv53, pv56))) / (sqrt(M_PI * (double)(2)) * sigma(pv53, pv56)); pv58(pv56) = pv96 * rho(pv56); } pv60 = 0; for( pv55 = 0;pv55 <= n_classes - 1;pv55++ ) pv60 += pv58(pv55); for( pv80 = 0;pv80 <= n_classes - 1;pv80++ ) // The denominator pv60 can become zero due to round-off errors. // In that case, each class is considered to be equally likely. if ( pv60 == 0 ) q(pv13, pv80) = (double)(1) / (double)(n_classes); else q(pv13, pv80) = pv58(pv80) / pv60; } if ( loopcounter > 1 ) { pv98 = 0; for( pv87 = 0;pv87 <= n_dim - 1;pv87++ ) for( pv88 = 0;pv88 <= n_classes - 1;pv88++ ) pv98 += abs(mu(pv87, pv88) - muold(pv87, pv88)) / (abs(mu(pv87, pv88)) + abs(muold(pv87, pv88))); pv99 = 0; for( pv89 = 0;pv89 <= n_classes - 1;pv89++ ) pv99 += abs(rho(pv89) - rhoold(pv89)) / (abs(rho(pv89)) + abs(rhoold(pv89))); pv100 = 0; for( pv90 = 0;pv90 <= n_dim - 1;pv90++ ) for( pv91 = 0;pv91 <= n_classes - 1;pv91++ ) pv100 += abs(sigma(pv90, pv91) - sigmaold(pv90, pv91)) / (abs(sigma(pv90, pv91)) + abs(sigmaold(pv90, pv91))); pv86 = pv98 + pv99 + pv100; } else ; } retval.resize(3); retval(0) = mu; retval(1) = rho; retval(2) = sigma; return retval; } //-- End of code --------------------------------------------------------------- Code Generator = DSL Compiler Generated program: . . . • Ground cover map: • multiple Landsat-bands • estimate pixel classes • estimate class parameters • Implementation problems: • which model? • which algorithm? • efficient C/C++ code? • correctness?

  5. //----------------------------------------------------------------------------//---------------------------------------------------------------------------- // Code file generated by AutoBayes V0.0.1 // (c) 1999-2004 ASE Group, NASA Ames Research Center // Problem: Mixture of Gaussians // Source: examples/cover.ab // Command: ./autobayes // examples/cover.ab // Generated: Wed Mar 10 16:07:54 2004 //---------------------------------------------------------------------------- #include "autobayes.h" //---------------------------------------------------------------------------- // Octave Function: cover //---------------------------------------------------------------------------- DEFUN_DLD(cover,input_args,output_args, "") { octave_value_list retval; if (input_args.length () != 4 || output_args != 3 ){ octave_stdout << "wrong usage"; return retval; } //-- Input declarations ---------------------------------------------------- // Number of classes octave_value arg_n_classes = input_args(0); if (!arg_n_classes.is_real_scalar()){ gripe_wrong_type_arg("n_classes", (const string &)"Scalar expected"); return retval; } double n_classes = (double)(arg_n_classes.double_value()); octave_value arg_x = input_args(1); if (!arg_x.is_real_matrix()){ gripe_wrong_type_arg("x", (const string &)"Matrix expected"); return retval; } Matrix x = (Matrix)(arg_x.matrix_value()); // Iteration tolerance for convergence loop octave_value arg_tolerance1 = input_args(2); if (!arg_tolerance1.is_real_scalar()){ gripe_wrong_type_arg("tolerance1", (const string &)"Scalar expected"); return retval; } double tolerance1 = (double)(arg_tolerance1.double_value()); // maximal number of EM iterations octave_value arg_maxiteration = input_args(3); if (!arg_maxiteration.is_real_scalar()){ gripe_wrong_type_arg("maxiteration", (const string &)"Scalar expected"); return retval; } double maxiteration = (double)(arg_maxiteration.double_value()); //-- Constant declarations ------------------------------------------------- // Number of data dimensions int n_dim = arg_x.rows(); // Number of data points int n_points = arg_x.columns(); // tolerance for appr. 600 data points double tolerance = 0.0003; //-- Output declarations --------------------------------------------------- Matrix mu(n_dim, n_classes); ColumnVector rho(n_classes); Matrix sigma(n_dim, n_classes); //-- Local declarations ---------------------------------------------------- // class assignment vector ColumnVector c(n_points); // Label: label0 // class membership table used in Discrete EM-algorithm Matrix q(n_points, n_classes); // local centers used for center-based initialization Matrix center(n_classes, n_dim); // Random index of data point int pick; // Loop variable int pv68; int pv65; int pv66; int pv42; int pv43; int pv13; int pv24; int pv56; int pv80; // Summation accumulator double pv83; double pv84; double pv85; // Lagrange-multiplier double l; // Common subexpression double pv52; // Memoized common subexpression ColumnVector pv58(n_classes); // Common subexpression double pv60; int pv70; int pv69; int pv71; Matrix muold(n_dim, n_classes); ColumnVector rhoold(n_classes); Matrix sigmaold(n_dim, n_classes); int pv73; int pv74; int pv75; int pv76; int pv77; // convergence loop counter int loopcounter; // sum up the Diffs double pv86; // Summation accumulator double pv92; double pv94; double pv95; double pv99; double pv98; double pv100; int pv26; int pv49; int pv48; int pv50; // Product accumulator double pv96; int pv53; int pv55; int pv89; int pv88; int pv87; int pv90; int pv91; // Check constraints on inputs ab_assert( 0 < n_classes ); ab_assert( 10 * n_classes < n_points ); ab_assert( 0 < n_dim ); ab_assert( 0 < n_points ); // Label: label1 // Label: label2 // Label: label4 // Discrete EM-algorithm // // The model describes a discrete latent (or hidden) variable problem with // the latent variable c and the data variable x. The problem to optimize // the conditional probability pr(x | {mu, rho, sigma}) w.r.t. the variables // mu, rho, and sigma can thus be solved by an application of the (discrete) // EM-algorithm. // The algorithm maintains as central data structure a class membership // table q (see "label0") such that q(pv13, pv61) is the probability that // data point pv13 belongs to class pv61, i.e., // q(pv13, pv61) == pr([c(pv13) == pv61]) // The algorithm consists of an initialization phase for q (see "label2"), // followed by a convergence phase (see "label5"). // // Initialization // The initialization is center-based, i.e., for each class (i.e., value of // the hidden variable c) a center value center is chosen first // (see "label4"). Then, the values for the local distribution are // calculated as distances between the data points and these center values // (see "label6"). // // Random initialization of the centers center with data points; // note that a data point can be picked as center more than once. for( pv65 = 0;pv65 <= n_classes - 1;pv65++ ) { pick = uniform_int_rnd(n_points - 1 - 0); for( pv66 = 0;pv66 <= n_dim - 1;pv66++ ) center(pv65, pv66) = x(pv66, pick); } // Label: label6 for( pv13 = 0;pv13 <= n_points - 1;pv13++ ) for( pv68 = 0;pv68 <= n_classes - 1;pv68++ ) { pv83 = 0; for( pv69 = 0;pv69 <= n_dim - 1;pv69++ ) pv83 += (center(pv68, pv69) - x(pv69, pv13)) * (center(pv68, pv69) - x(pv69, pv13)); pv85 = 0; for( pv70 = 0;pv70 <= n_classes - 1;pv70++ ) { pv84 = 0; for( pv71 = 0;pv71 <= n_dim - 1;pv71++ ) pv84 += (center(pv70, pv71) - x(pv71, pv13)) * (center(pv70, pv71) - x(pv71, pv13)); pv85 += sqrt(pv84); } q(pv13, pv68) = sqrt(pv83) / pv85; } // Label: label5 // EM-loop // // The EM-loop iterates two steps, expectation (or E-Step) (see "label7"), // and maximization (or M-Step) (see "label8"); however, due to the form of // the initialization used here, the are ordered the other way around. The // loop runs until convergence in the values of the variables mu, rho, and // sigma is achieved. loopcounter = 0; // repeat at least once pv86 = tolerance1; while( ((loopcounter < maxiteration) && (pv86 >= tolerance1)) ) { loopcounter = 1 + loopcounter; if ( loopcounter > 1 ) { // assign current values to old values for( pv73 = 0;pv73 <= n_dim - 1;pv73++ ) for( pv74 = 0;pv74 <= n_classes - 1;pv74++ ) muold(pv73, pv74) = mu(pv73, pv74); for( pv75 = 0;pv75 <= n_classes - 1;pv75++ ) rhoold(pv75) = rho(pv75); for( pv76 = 0;pv76 <= n_dim - 1;pv76++ ) for( pv77 = 0;pv77 <= n_classes - 1;pv77++ ) sigmaold(pv76, pv77) = sigma(pv76, pv77); } else ; // Label: label8 label3 // M-Step // // Decomposition I // The problem to optimize the conditional probability pr({c, x} | {mu, // rho, sigma}) w.r.t. the variables mu, rho, and sigma can under the // given dependencies by Bayes rule be decomposed into two independent // subproblems: // max pr(c | rho) for rho // max pr(x | {c, mu, sigma}) for {mu, sigma} // The conditional probability pr(c | rho) is under the dependencies // given in the model equivalent to // prod([pv17 := 0 .. n_points - 1], pr(c(pv17) | rho)) // The probability occuring here is atomic and can thus be replaced by // the respective probability density function given in the model. // Summing out the expected variable c(pv13) yields the log-likelihood // function // sum_domain([pv13 := 0 .. n_points - 1], // [pv18 := 0 .. n_classes - 1], [c(pv13)], q(pv13, pv18), // log(prod([pv17 := 0 .. n_points - 1], rho(c(pv17))))) // which can be simplified to // sum([pv18 := 0 .. n_classes - 1], // log(rho(pv18)) * sum([pv17 := 0 .. n_points - 1], q(pv17, pv18))) // This function is then optimized w.r.t. the goal variable rho. // The expression // sum([pv18 := 0 .. n_classes - 1], // log(rho(pv18)) * sum([pv17 := 0 .. n_points - 1], q(pv17, pv18))) // is maximized w.r.t. the variable rho under the constraint // 1 == sum([pv23 := 0 .. n_classes - 1], rho(pv23)) // using the Lagrange-multiplier l. l = n_points; for( pv24 = 0;pv24 <= n_classes - 1;pv24++ ) { // The summand // l // is constant with respect to the goal variable rho(pv24) and can // thus be ignored for maximization. The function // sum([pv18 := 0 .. n_classes - 1], // log(rho(pv18)) * // sum([pv17 := 0 .. n_points - 1], q(pv17, pv18))) - // l * sum([pv23 := 0 .. n_classes - 1], rho(pv23)) // is then symbolically maximized w.r.t. the goal variable rho(pv24). // The differential // sum([pv17 := 0 .. n_points - 1], q(pv17, pv24)) / rho(pv24) - l // is set to zero; this equation yields the solution // sum([pv26 := 0 .. n_points - 1], q(pv26, pv24)) / l pv92 = 0; for( pv26 = 0;pv26 <= n_points - 1;pv26++ ) pv92 += q(pv26, pv24); rho(pv24) = pv92 / l; } // The conditional probability pr(x | {c, mu, sigma}) is under the // dependencies given in the model equivalent to // prod([pv32 := 0 .. n_dim - 1, pv33 := 0 .. n_points - 1], // pr(x(pv32, pv33) | {c(pv33), mu(pv32, *), sigma(pv32, *)})) // The probability occuring here is atomic and can thus be replaced by // the respective probability density function given in the model. // Summing out the expected variable c(pv13) yields the log-likelihood // function // sum_domain([pv13 := 0 .. n_points - 1], // [pv34 := 0 .. n_classes - 1], [c(pv13)], q(pv13, pv34), // log(prod([pv32 := 0 .. n_dim - 1, // pv33 := 0 .. n_points - 1], // exp((x(pv32, pv33) - mu(pv32, c(pv33))) ** 2 / // -2 / sigma(pv32, c(pv33)) ** 2) / // (sqrt(2 * pi) * sigma(pv32, c(pv33)))))) // which can be simplified to // -((n_dim * n_points * (log(2) + log(pi)) + // sum([pv33 := 0 .. n_points - 1, pv34 := 0 .. n_classes - 1], // q(pv33, pv34) * // sum([pv32 := 0 .. n_dim - 1], // (x(pv32, pv33) - mu(pv32, pv34)) ** 2 / // sigma(pv32, pv34) ** 2))) / 2 + // sum([pv34 := 0 .. n_classes - 1], // sum([pv32 := 0 .. n_dim - 1], log(sigma(pv32, pv34))) * // sum([pv33 := 0 .. n_points - 1], q(pv33, pv34)))) // This function is then optimized w.r.t. the goal variables mu and // sigma. // The summands // n_dim * n_points * log(2) / -2 // n_dim * n_points * log(pi) / -2 // are constant with respect to the goal variables mu and sigma and can // thus be ignored for maximization. // Index decomposition // The function // -(sum([pv33 := 0 .. n_points - 1, pv34 := 0 .. n_classes - 1], // q(pv33, pv34) * // sum([pv32 := 0 .. n_dim - 1], // (x(pv32, pv33) - mu(pv32, pv34)) ** 2 / // sigma(pv32, pv34) ** 2)) / 2 + // sum([pv34 := 0 .. n_classes - 1], // sum([pv32 := 0 .. n_dim - 1], log(sigma(pv32, pv34))) * // sum([pv33 := 0 .. n_points - 1], q(pv33, pv34)))) // can be optimized w.r.t. the variables mu(pv42, pv43) and // sigma(pv42, pv43) element by element (i.e., along the index variables // pv42 and pv43) because there are no dependencies along thats dimensions. for( pv42 = 0;pv42 <= n_dim - 1;pv42++ ) for( pv43 = 0;pv43 <= n_classes - 1;pv43++ ) // The factors // n_classes // n_dim // are non-negative and constant with respect to the goal variables // mu(pv42, pv43) and sigma(pv42, pv43) and can thus be ignored for // maximization. // The function // -(log(sigma(pv42, pv43)) * // sum([pv33 := 0 .. n_points - 1], q(pv33, pv43)) + // sum([pv33 := 0 .. n_points - 1], // (x(pv42, pv33) - mu(pv42, pv43)) ** 2 * q(pv33, pv43)) / // (2 * sigma(pv42, pv43) ** 2)) // is then symbolically maximized w.r.t. the goal variables // mu(pv42, pv43) and sigma(pv42, pv43). The partial differentials // df / d_mu(pvar(42), pvar(43)) == // (sum([pv33 := 0 .. n_points - 1], // q(pv33, pv43) * x(pv42, pv33)) - // mu(pv42, pv43) * // sum([pv33 := 0 .. n_points - 1], q(pv33, pv43))) / // sigma(pv42, pv43) ** 2 // df / d_sigma(pvar(42), pvar(43)) == // sum([pv33 := 0 .. n_points - 1], // (x(pv42, pv33) - mu(pv42, pv43)) ** 2 * q(pv33, pv43)) / // sigma(pv42, pv43) ** 3 - // sum([pv33 := 0 .. n_points - 1], q(pv33, pv43)) / // sigma(pv42, pv43) // are set to zero; these equations yield the solutions // mu(pv42, pv43) == // cond(0 == sum([pv46 := 0 .. n_points - 1], q(pv46, pv43)), // fail(division_by_zero), // sum([pv48 := 0 .. n_points - 1], // q(pv48, pv43) * x(pv42, pv48)) / // sum([pv47 := 0 .. n_points - 1], q(pv47, pv43))) // sigma(pv42, pv43) == // cond(0 == sum([pv49 := 0 .. n_points - 1], q(pv49, pv43)), // fail(division_by_zero), // sqrt(sum([pv50 := 0 .. n_points - 1], // (x(pv42, pv50) - mu(pv42, pv43)) ** 2 * // q(pv50, pv43)) / // sum([pv51 := 0 .. n_points - 1], q(pv51, pv43)))) { // Initialization of common subexpression pv52 = 0; for( pv49 = 0;pv49 <= n_points - 1;pv49++ ) pv52 += q(pv49, pv43); if ( 0 == pv52 ) { ab_error( division_by_zero ); } else { pv94 = 0; for( pv48 = 0;pv48 <= n_points - 1;pv48++ ) pv94 += q(pv48, pv43) * x(pv42, pv48); mu(pv42, pv43) = pv94 / pv52; } if ( 0 == pv52 ) { ab_error( division_by_zero ); } else { pv95 = 0; for( pv50 = 0;pv50 <= n_points - 1;pv50++ ) pv95 += (x(pv42, pv50) - mu(pv42, pv43)) * (x(pv42, pv50) - mu(pv42, pv43)) * q(pv50, pv43); sigma(pv42, pv43) = sqrt(pv95 / pv52); } } // Label: label7 // E-Step // Update the current values of the class membership table q. for( pv13 = 0;pv13 <= n_points - 1;pv13++ ) { // Initialization of common subexpression for( pv56 = 0;pv56 <= n_classes - 1;pv56++ ) { pv96 = 1; for( pv53 = 0;pv53 <= n_dim - 1;pv53++ ) pv96 *= exp((x(pv53, pv13) - mu(pv53, pv56)) * (x(pv53, pv13) - mu(pv53, pv56)) / (double)(-2) / (sigma(pv53, pv56) * sigma(pv53, pv56))) / (sqrt(M_PI * (double)(2)) * sigma(pv53, pv56)); pv58(pv56) = pv96 * rho(pv56); } pv60 = 0; for( pv55 = 0;pv55 <= n_classes - 1;pv55++ ) pv60 += pv58(pv55); for( pv80 = 0;pv80 <= n_classes - 1;pv80++ ) // The denominator pv60 can become zero due to round-off errors. // In that case, each class is considered to be equally likely. if ( pv60 == 0 ) q(pv13, pv80) = (double)(1) / (double)(n_classes); else q(pv13, pv80) = pv58(pv80) / pv60; } if ( loopcounter > 1 ) { pv98 = 0; for( pv87 = 0;pv87 <= n_dim - 1;pv87++ ) for( pv88 = 0;pv88 <= n_classes - 1;pv88++ ) pv98 += abs(mu(pv87, pv88) - muold(pv87, pv88)) / (abs(mu(pv87, pv88)) + abs(muold(pv87, pv88))); pv99 = 0; for( pv89 = 0;pv89 <= n_classes - 1;pv89++ ) pv99 += abs(rho(pv89) - rhoold(pv89)) / (abs(rho(pv89)) + abs(rhoold(pv89))); pv100 = 0; for( pv90 = 0;pv90 <= n_dim - 1;pv90++ ) for( pv91 = 0;pv91 <= n_classes - 1;pv91++ ) pv100 += abs(sigma(pv90, pv91) - sigmaold(pv90, pv91)) / (abs(sigma(pv90, pv91)) + abs(sigmaold(pv90, pv91))); pv86 = pv98 + pv99 + pv100; } else ; } retval.resize(3); retval(0) = mu; retval(1) = rho; retval(2) = sigma; return retval; } //-- End of code --------------------------------------------------------------- Code Generator = DSL Compiler • Generated program: • ~ 1sec. generation time • ≥ 600 lines • ≥ 1:30 leverage • fully documented • deeply nested loops • complex calculations • “correct-by-construction” . . . • Ground cover map: • multiple Landsat-bands • estimate pixel classes • estimate class parameters • Implementation problems: • which model? • which algorithm? • efficient C/C++ code? • correctness?

  6. [...] // Initialization for(v44=0;v44<=n-1;v44++) for(v45=0;v45<=c-1;v45++ ) q(v44,v45)=0; for(v46=0;v46<=n-1;v46++) q(v46,z(v46))=1; [...] for(v12=0;v12<=n-1;pv12++) for(v13=0;v13<=c-1;pv13++) { pv68 = 0; for(v41=0;v41 <= c-1;pv41++ ) v68+=exp((x(v12)-mu(v41))* (x(v12)-mu(v41))/ (double)(-2)/ [...]); [...] model mog as 'Mixture of Gaussians'. [...] % Class probabilities double rho(1..c). where 1 = sum(I:=1..c, rho(I)). % Class parameters double mu(1..c). double sigma(1..c). where 0 < sigma(_). % Hidden variable nat z(1..n) ~ discrete(rho). % Data data double x(1..n). x(I) ~ gauss(mu(z(I)),sigma(z(I))). % Goal max pr(x|{rho,mu,sigma}) for {rho,mu,sigma}. Code Model Generator Assurance Should you trust a code generator? • Correctness of the generated code depends oncorrectness of the generator • Correctness of the generator is difficult to show • very large • very complicated • very dynamic So what do you do?

  7. [...] // Initialization for(v44=0;v44<=n-1;v44++) for(v45=0;v45<=c-1;v45++ ) q(v44,v45)=0; for(v46=0;v46<=n-1;v46++) q(v46,z(v46))=1; [...] for(v12=0;v12<=n-1;pv12++) for(v13=0;v13<=c-1;pv13++) { pv68 = 0; for(v41=0;v41 <= c-1;pv41++ ) v68+=exp((x(v12)-mu(v41))* (x(v12)-mu(v41))/ (double)(-2)/ [...]); [...] model mog as 'Mixture of Gaussians'. [...] % Class probabilities double rho(1..c). where 1 = sum(I:=1..c, rho(I)). % Class parameters double mu(1..c). double sigma(1..c). where 0 < sigma(_). % Hidden variable nat z(1..n) ~ discrete(rho). % Data data double x(1..n). x(I) ~ gauss(mu(z(I)),sigma(z(I))). % Goal max pr(x|{rho,mu,sigma}) for {rho,mu,sigma}. Code Model Generator Assurance Should you trust a code generator? • Correctness of the generated code depends oncorrectness of the generator • Correctness of the generator is difficult to show • very large • very complicated • very dynamic So what??? • Don’t care whether generator is buggy for other peopleas long as it works for me now!  Certifiable Code Generation (PCC for code generators)

  8. Certifiable Code Generation Generator is extended to support post-generation verification • certify generated programs, not the generator • minimizes trusted component base • no need to re-certify generator • use standard program verification techniques • annotations (e.g., invariants) give hints only • proofs are independently verifiable evidence (certificates) • keeps certification independent from code generation • focus on specific safety properties • keeps annotation generation and certification tractable [...] // Initialization for(v44=0;v44<=n-1;v44++) for(v45=0;v45<=c-1;v45++ ) q(v44,v45)=0; for(v46=0;v46<=n-1;v46++) q(v46,z(v46))=1; [...] for(v12=0;v12<=n-1;pv12++) for(v13=0;v13<=c-1;pv13++) { pv68 = 0; for(v41=0;v41 <= c-1;pv41++ ) v68+=exp((x(v12)-mu(v41))* (x(v12)-mu(v41))/ (double)(-2)/ [...]); [...] model mog as 'Mixture of Gaussians'. [...] % Class probabilities double rho(1..c). where 1 = sum(I:=1..c, rho(I)). % Class parameters double mu(1..c). double sigma(1..c). where 0 < sigma(_). % Hidden variable nat z(1..n) ~ discrete(rho). % Data data double x(1..n). x(I) ~ gauss(mu(z(I)),sigma(z(I))). % Goal max pr(x|{rho,mu,sigma}) for {rho,mu,sigma}. Proofs Model Code

  9. Hoare-Style Certification Framework Safety property: formal characterization of aspects of intuitively safe programs • introduce “shadow variables” to record safety information • extend operational semantics by effects on shadow variables • define semantic safety judgements on expressions/statements Safety policy: proof rules designed to show that safety property holds for program • extend Hoare-rules by safety predicate and shadow variables ⇒ prove soundness and completeness (offline, manual)

  10. Safety Properties Language-specific properties: • array indices within bounds (array)∀a[i]∈c:a ≤ i ≤ a • variable initialization before use(init)∀ rvar x∈c:x = INIT • nil-pointer dereference, … Domain-specific properties: • matrix symmetry(symm)∀ covar m∈c:∀i,i:m[i,j] = m[j,i] • covariance matrices known by code generator • can insert annotations • vector norm, coordinate frame safety, … lo hi similar to PCC init

  11. Certification Architecture • standard PCC architecture • “organically grown” job control: • run scripts based on SystemOnTPTP • dynamic axiom generation (sed / awk) • dynamic axiom selection (based on problem names)

  12. Lessons

  13. Lesson #1:Thingsdon’tgowrongintheATP Most errors are in the application, axiomatization, or integration: • interface between application and ATP == proof task • application debugging == task proving / refuting • application errors difficult to detect • application must provide full axiomatization (axioms / lemmas) • no standards ⇒ no reuse • consistency difficult to ensure manually • integration needs generally supported job control language • better than SystemOnTPTP + shell scripts + C pre-processor • applications need more robust ATPs • better error checking: free variables, ill-sorted terms, … • consistency checking more important than proof checking

  14. Lesson #2: TPTP ≠ Real World Applications and benchmarks have different profiles • full (typed) FOF vs. CNF, UEQ, HNE, EPR, … • clausification is integral part of ATP • problems in subclasses are rare (almost accidental) • ATPs need to work on full FOF(⇒ branch to specialized solvers hidden) • task stream vs. single task: one problem = many tasks • success only if all tasks proven • mosttasksrelativelysimple, but often large • mostproblemscontainhardtasks • background theory remains stable • ATPs need to minimize overhead (⇒ batch mode) • ATPs should be easily tunable to application domain

  15. Lesson #2: TPTP ≠ Real World • characteristics (and results) vary with policy: • array: partial orders & ground arithmetics • significant fraction of tasks solved, but not problems • most tasks relatively simple, most problems contain hard tasks • problem-oriented view magnifies ATP differences array

  16. Lesson #2: TPTP ≠ Real World • characteristics (and results) vary with policy: • array: partial orders & ground arithmetics • init: deeply nested select/update terms • completely overwhelms ATPs • response times determined by Tmax (60secs.) array init

  17. Lesson #2: TPTP ≠ Real World • characteristics (and results) vary with policy: • array: partial orders & ground arithmetics • init: deeply nested select/update terms • symm: deeply nested select/update terms (but trickier context...) • completely overwhelms ATPs • ATPs only solve trivial VCs array init symm

  18. Lesson #2: TPTP ≠ Real World • characteristics (and results) vary with policy: • array: partial orders & ground arithmetics • init: deeply nested select/update terms • symm: deeply nested select/update terms (but trickier context...) • array and init are inherently simple • should be solvable by any competitive ATP (“low-hanging fruit”) • TPTP overtuning? array init symm

  19. Lesson #3: Need controlled simplification Applications generate large conjectures with redundancies: • propositional: true → x, x → true, … • arithmetics: 6=5, minus(6, 1), … • Hoare-logic: select(update(update(update(x,0,0),1,1),2,2),0) • can frequently be evaluated / simplified before proving:“rewriting beats resolution” • ATPs should provide (user-controlled) simplification mode: • ground-evaluation of built-in functions / predicates • orientation of equalities / equivalences • here: hand-crafted rewrite-based simplifications

  20. propositional simplification, min-scoping, splitting into VCs evaluation of ground arithmetics array: good w/E/Vampire,neutral w/Spass,mixed w/Equinox init: floods ATPs with hard VCs (other ATPs killed after hours) symm: splits hard VCs, no benefits Lesson #3: Need controlled simplification array init symm

  21. select(update(x,i,v), j) → (i=j) ? v : select(x, j) rules for_?_ : _ array, symm: no difference to before init: dramatic improvement for all ATPs (⇒ eliminates all array accesses) Lesson #3: Need controlled simplification array init symm

  22. domain-specific simplifications (mostly symmetry):symm(update(m,k,v)) → ∀i,i:select(update(m,k,v),i,j) = select(update(m,k,v),j,i) array, init: no substantial difference to before (but less VCs) symm: dramatic improvement for all ATPs Lesson #3: Need controlled simplification array init symm

  23. array init symm norm frame … property-specific core language-specific Lesson #4: Need axiom selection Application domain theories are often large but largely disjoint • core theory formalizes underlying programming language • array and init essentially part of core theory • property-specific theories • introduce symbols only occurring in tasks for the given property • contain lemmas only relevant to tasks for the given property • intuitively not required for other properties • should have no detrimental effect on ATP performance

  24. Lesson #4: Need axiom selection Example: init with redundant symm-axioms: • explicit symmetry-predicate:∀i,i:select(m,i,j) = select(m,j,i)⇒ symm(m)symm(n) ∧ symm(m) ⇒ symm(madd(n, m)) • implicit symmetry:∀i,i:select(n,i,j) = select(n,j,i)∧select(m,i,j) = select(m,j,i)⇒ select(madd(n,m),i,j) = select(madd(n,m),j,i) init + imp. symm init init + exp. symm

  25. Lesson #4: Need axiom selection • ATPs shouldn’t flatten structure in the domain theory • similar to distinction conjecture vs. axioms • coarse selection based on file structuring can be controlled by application • detailed selection based on signature of conjecture might be benificial (cf. Reif / Schellhorn 1998)

  26. Lesson #5: Need built-in theory support Applications use the same domain theories over and over again: • “It's disgraceful that we have to define integers using succ's,and make up our own array syntax“ • significant engineering effort • no standards ⇒ no reuse • hand-crafted axiomatizations are… • typically incomplete • typically sub-optimal for ATP • typically need generators to handle occurring literals • can add 3=succ(succ(succ(0))) but what about 1023? • shell scripts generate axioms for • Pressburgerization, finite domains (small numbers only) • ground orders (gt/leq), ground arithmetic (all occurring numbers) • often inadequate (i.e., wrong) • often inconsistent

  27. Lesson #5: Need built-in theory support FOL ATPs should “steal” from SMT-LIB and HO systems and provide libraries of standard theories: • TPTP TFF (typed FOL and built-in arithmetics) is a good start • Your ATP should support that! • SMT-LIB is a good goal to aim for • theories can be implemented by • axiom generation • decision procedures • Your ATP should support that!

  28. Lesson #6: Need ATP Plug&Play No single off-the-shelf ATP is optimal for all problems • combine ATPs with different preprocessing steps • clausification • simplification • axiom selection • ATP combinators • sequential composition • parallel competition • … • TPTPWorld is a good ATP harness but not a gluing framework

  29. Conclusions • (Software engineering) applications are tractable • no fancy logic, just POFOL and normal theories • different characteristics than TPTP (except for SWC and SWV :-) • Support theories! • theory libraries, built-in symbols • light-weight support sufficient • ATP customization • exploit regularities from application • user-controlled pre-processing • grab low-hanging fruits! • Success = Proof and Integration • need robust tools • need Plug&Play framework

More Related