harjoitusteht v t
Download
Skip this Video
Download Presentation
Harjoitustehtävät

Loading in 2 Seconds...

play fullscreen
1 / 5

Harjoitustehtävät - PowerPoint PPT Presentation


  • 79 Views
  • Uploaded on

Harjoitustehtävät. Mereologia ja sen soveltaminen Laskuharjoitus 2 M. Keinänen. HT 6. A1.  x  y ((x ○ y) →  z  w (( w < z) ↔ ((w < x) Λ (w < y)))) ├  x  y ( ¬ ( x < y) → (  z )((z < x) Λ ¬ ( z ○ x))) ¬ ( x < y) Apupremissi ( x ○ y) ν ¬ (x ○ y) Tautologia

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Harjoitustehtävät' - adonai


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
harjoitusteht v t

Harjoitustehtävät

Mereologia ja sen soveltaminen

Laskuharjoitus 2

M. Keinänen

slide2
HT 6

A1. xy ((x ○ y) → z w ((w < z) ↔ ((w < x) Λ (w < y))))

├ xy (¬ (x < y) → (z)((z < x) Λ¬ (z ○ x)))

  • ¬ (x < y) Apupremissi
  • (x ○ y) ν¬ (x ○ y) Tautologia
  • ¬(x ○ y) Apupremissi
  • x < x <, teoreema, US x/x
  • (z)(z < x) Λ¬(z ○ y) EG, lausel. 3, 4
  • ¬(x ○ y) → (z)(z < x) Λ¬(z ○ y) CP 3,..5
  • (x ○ y) Apupremissi
  • (x ○ y) → z w ((w < z) ↔ ((w < x) Λ (w < y))) US, A1
  • z w ((w < z) ↔ ((w < x) Λ (w < y))) MP 7,8
  • w ((w < a) ↔ ((w < x) Λ (w < y)) ES 9, a/z, a=axy
slide3
HT6
  • (a < a) ↔ ((a < x) Λ (a < y)) US 10, a/w
  • (a < x) Λ (a < y)
  • (x < a) Vastaoletus
  • (x = a) <, teoreema 12,13
  • (x < y) 14 IK, RR
  • ¬ (x < y) Λ (x < y) RR
  • ¬(x < a) CP 13, …16
  • (¬(x < a) Λ (a < x)) → (a « x) US x/x, teoreema
  • (a « x) MP
  • (a « x) →(z)((z « x) Λ¬ (z ○ a) US a/x, y/y, PA 11
  • (z)((z « x) Λ¬ (z ○ a) MP
  • (b « x) Λ¬ (b ○ a) ES 21 b/z
  • (t < a) ↔ ((t < x) Λ (t < y))
slide4
HT6

23. (b < x) Λ¬ (b ○ a) Lauselogiikka, Määr. 22

24. ( w)((w < b) Λ(w < y)) vastaoletus

25. (c < b) Λ(c < y) ES 24 c/w

26. (c < x) Λ(c < y) Määr., Lauselogiikka 23, 26

27. ((c < a) ↔ ((c < x) Λ (c < y)) US 10 c/w

28. (c < a) Lauselogiikka 26, 27

29. ¬ (b ○ a) Lauselogiikka 23

30. x ¬ ((x < b) Λ (x < a)) 29. Määr.

31. ¬ ((c < b) Λ (c < a)) US 30, c/b RR 25,28

32. ¬( w)((w < b) Λ(w < y)) 24, 31…. ¬24

33. ¬ (b ○ y) Määr. 32

34. (b < x) Λ¬ (b ○ y) 23, 33 lauselogiikka

slide5
HT6
  • ( z) ((z < x) Λ¬ (z ○ y)) 34, EG, z/b
  • (x ○ y) → ( z) ((z < x) Λ¬ (z ○ y)) CP, 7-35
  • ( z) ((z < x) Λ¬ (z ○ y)) CP, 2,6,36
  • ¬ (x < y) → ( z) ((z < x) Λ¬ (z ○ y)) CP, 1-37
  • xy (¬ (x < y) → (z)((z < x) Λ¬ (z ○ x))) UG 38 x/x, y/y