Download
1 / 37

Rules for Predicting Molecular Geometry 1.  Sketch the Lewis structure of the molecule or ion - PowerPoint PPT Presentation


  • 81 Views
  • Uploaded on

Rules for Predicting Molecular Geometry 1.  Sketch the Lewis structure of the molecule or ion 2.  Count the electron pairs and arrange them in the way that  minimizes electron-pair repulsion. 3.  Determine the position of the atoms from the way the electron pairs are shared.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about ' Rules for Predicting Molecular Geometry 1.  Sketch the Lewis structure of the molecule or ion' - abram


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

Rules for Predicting Molecular Geometry

1.  Sketch the Lewis structure of the molecule or ion

2.  Count the electron pairs and arrange them in the way that  minimizes electron-pair repulsion.

3.  Determine the position of the atoms from the way the electron pairs are shared.

4.  Determine the name of the molecular structure from the position of the atoms.

5.  Double or triple bonds are counted as one bonding pair when predicting geometry.


Note: The same rules apply for molecules that contain more than one central atom


The Dipole

A dipole arises when two electrical charges of equal magnitude but opposite sign are separated by distance.


The dipole moment (m)

  • = Qr

  • where Q is the magnitude of the charges and r is the distance


For a polyatomic molecule we treat the dipoles as 3D vectors

The sum of these vectors will give us the dipole for the molecule



The degree of overlap is determined by the system’s potentialenergy

equilibrium bond distance

The point at which the potentialenergy is a minimum is called the equilibrium bond distance


Formation of sp hybrid orbitals

The combination of an s orbital and a p orbital produces 2 new orbitals called sp orbitals.

2s

These new orbitals are called hybrid orbitals

The process is called hybridization

What this means is that both the s and one p orbital are involved in bonding to the connecting atoms


Formation of sp2hybrid orbitals


Formation of sp3hybrid orbitals



Multiple Bonds geometry

Everything we have talked about so far has only dealt with what we call sigma bonds

Sigma bond (s)  A bond where the line of electron density is concentrated symmetrically along the line connecting the two atoms.


Pi bond geometry (p)  A bond where the overlapping regions exist above and below the internuclear axis (with a nodal plane along the internuclear axis).


Example: H geometry2C=CH2


Example: H geometry2C=CH2


Example: HC geometryCH


Delocalized geometryp bonds

When a molecule has two or more resonance structures, the pi electrons can be delocalized over all the atoms that have pi bond overlap.


Example: C geometry6H6 benzene

Benzene is an excellent example.  For benzene the p orbitals all overlap leading to a very delocalized electron system

In general delocalized p bonding is present in all molecules where we can draw resonance structures with the multiple bonds located in different places.


Moleculuar Orbital (MO) Theory geometry

ANTBONDING

These two new orbitals have different energies. 

BONDING

The one that is lower in energy is called the bonding orbital,

The one higher in energy is called an antibonding orbital.



MO Theory for 2nd row diatomic molecules geometry

Molecular Orbitals (MO’s) from Atomic Orbitals (AO’s)

1. # of Molecular Orbitals = # of Atomic Orbitals

2. The number of electrons occupying the Molecular orbitals is equal to the sum of the valence electrons on the constituent atoms.

3. When filling MO’s the Pauli Exclusion Principle Applies (2 electrons per Molecular Orbital)

4. For degenerate MO’s, Hund's rule applies.

5. AO’s of similar energy combine more readily than ones of different energy

6. The more overlap between AOs the lower the energy of the bonding orbital they create and the higher the energy of the antibonding orbital.


Example: Li geometry2


MOs from 2p atomic orbitals geometry

s

p

1) 1 sigma bond through overlap of orbitals along the internuclear axis.

2) 2 pi bonds through overlap of orbitals above and below (or to the sides) of the internuclear axis.


Interactions between the 2s and 2p orbitals geometry

The s2s and s2p molecular orbitals interact with each other so as to lower the energy of the s2s MO and raise the energy of the s2p MO.


For B geometry2, C2, and N2 the interaction is so strong that thes2pis pushed higher in energy thanp2porbitals



ad