1 / 61

Riposo a letto: è un trattamento benefico ?

MOBILIZZAZIONI E ATTIVITÀ MOTORIA NEL PAZIENTE CON INFARTO MIOCARDICO ACUTO E CON INSUFFICIENZA CARDIACA REFRATTARIA Premesse fisiopatologiche Alessandra Chinaglia UTIC Ospedale Maria Vittoria, ASLTO2. Riposo a letto: è un trattamento benefico ?.

abra
Download Presentation

Riposo a letto: è un trattamento benefico ?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MOBILIZZAZIONI E ATTIVITÀ MOTORIA NEL PAZIENTE CON INFARTOMIOCARDICO ACUTO E CON INSUFFICIENZA CARDIACA REFRATTARIAPremesse fisiopatologiche Alessandra ChinagliaUTIC Ospedale Maria Vittoria, ASLTO2

  2. Riposo a letto: è un trattamento benefico ? • Fino agli anni ‘50 trattamento di scelta per infarto miocardico ed altre patologie J A M A1944 The evil sequelae of complete bed rest.

  3. 39 trials sul riposo a letto • 15 patologia differenti (5777 pazienti) • Cardiologiche: IMA e post cateterismo In nessun trial miglioramento clinico con il riposo a letto (o nessun miglioramento clinico o peggioramento) Allen,Lancet 1999; 354: 1 2 2 9 – 3 3

  4. ATROFIA MUSCOLARE DA INATTIVITA’ • Proteolisi • Ridotta sintesi proteica da inibizione dei fattori di iniziazione • Perdita di massa muscolare • Riduzione dello spessore delle fibre • Riduzione della capacità muscolare • Passaggio da fibre muscolari lente (resistenti alla fatica) a fibre muscolari veloci • Variazione del metabolismo (da acidi grassi a glucosio)

  5. L’attività muscolare svolge un ruolo antiinfiammatorio Immobilità Aumento delle citochine circolanti Stato pro infiammatorio Perdita di tessuto muscolare

  6. IMPATTO FUNZIONALE DEL RIPOSO A LETTO PER 10 GIORNI IN ADULTI SANI ANZIANI • 11 uomini e donne • età 67 +/- 5 anni • riposo a letto per 10 giorni • dieta normocalorica • Forza di estensione del ginocchio -13.2% p =.004 • Potenza nel salire le scale -14 % p =.01 • Capacità massimale aerobica -12% p =.04 Kortebein P J Gerontol A Biol Sci Med Sci 2008; 63:1076-81

  7. 3 Capacità muscolare Perdita di forza del quadricipite dell’1% - 1.5% per ogni giorno di riposo a letto (individui sani) Negli anziani ulteriore peggioramento Donne: 36.3% Età media: 69.9+13.2 anni Mediana (range 25-75°): 72 (61-80) anni Età > 75 anni: 38.9% dei pazienti

  8. Densità ossea • L’osso viene continuamente rimodellato in base al carico meccanico (forza di gravità e sollecitazioni meccaniche muscolari) • Il riposo a letto comporta riduzione nella densità ossea della colonna lombare, testa del femore, e calcagno. • dopo la ripresa della mobilizzazione il recupero della densità ossea è lento • rischio di fratture (particolarmente nelle donne anziane)

  9. Effetti del riposo a letto prolungato sulle strutture osteomuscolari del tronco • Dolore lombare • Allungamento della colonna • Atrofia della muscolatura spinale • Aumento dell’altezza dei dischi intervertebrali • Alterata composizione dei dischi intervertebrali Le alterazioni della morfologia dei dischi intervertebrali persistono per 5 mesi dopo riposo a letto per 21 giorni. Hides, Eur Spine J (2011) 20:808–818

  10. Ulcere da decubito • Il processo che porta alle ulcere inizia dopo poche ore di immobilità • Riguarda le zone sottoposte a pressione in corrispondenza di prominenze ossee • Facilitato da barelle troppo strette per permettere i movimenti, età avanzata, sedazione, incoscienza, immobilità prolungata

  11. Effetti dell’allettamento sul polmone • Ridotta espansione polmonare • Ridotta capacità respiratoria • Atelettasie • Polmoniti

  12. Effetti dell’allettamento sul sistema cardiovascolare • Riduzione della compliance delle vene delle gambe • Perdita di fluidi che determinano ipotensione ortostatica, tachicardia, riduzione della gittata cardiaca, della portata cardiaca e delle resistenze vascolari • Disfunzione microvascolare

  13. Disfunzione microvascolare da inattività Hamburg, Arterioscler Thromb Vasc Biol. 2007;27:2650-2656

  14. Malnutrizione • 40% dei pazienti ospedalizzati sono già denutriti al momento del ricovero • I pazienti ricoverati in terapia intensiva ricevono meno del 60% del loro fabbisogno calorico • Spesso la denutrizione è prevalentemente proteica • La perdita di proteine viene controbilanciata utilizzando prevalentemente proteine muscolari

  15. Allettamento richiede terapia antitrombotica ! Prevenzione embolia Sanguinamento conservative invasive Rischio Beneficio

  16. DELIRIUM !!!

  17. Surviving the intensive care: residual physical, cognitive, and emotional dysfunction. • I pazienti ricoverati per malattie acute e critiche possono soffrire di problemi fisici, psicologici e cognitivi • Depressione secondaria alla sensazione di dipendenza anche nelle più elementari attività, allo stress per la gravità della malattia, alla consapevolezza della vulnerabilità • Mobilizzazione precoce, riabilitazione e fisioterapia Jones, Thorac Surg Clin 2012 Nov;22(4):509-16

  18. Mr E, a 56-year-old man with severe chronic obstructive pulmonary disease and acute renal failure, ambulating on day 4 after admission to the medical intensive care unit while receiving mechanical ventilation via an oral endotracheal tube. Needham, JAMA. 2008;300(14):1685-1690

  19. CONTROINDICAZIONI: • frequenza cardiaca > 110/min a riposo • pressione arteriosa media < 60 • stato di shock • necessità di FiO2 > 60% • aritmie ventricolari subentranti La mobilizzazione precoce in pazienti critici con insufficienza respiratoria non è solo fattibile e sicura ma previene le complicazioni neuromuscolari American Journal of Critical Care, 2009;18:212-221

  20. Move to Improve: The Feasibility of Using an Early Mobility Protocol to Increase Ambulation in the Intensive and Intermediate Care Settings. • 16 letti Adult Medical/Surgical ICU /26 letti Adult Intermediate Care Unit (IMCU) • team multidisciplinare • algoritmo per indirizzare la valutazione della potenziale mobilità • Daily Ambulation Status Reports rivalutato ogni mattina per determinare il livello di mobilizzazione. • Nei 3 mesi precedenti la mobilizzazione entro 72 ore è avvenuta nel 6.2% dei pazienti ICU e 15.5% dei pazienti IMCU • Nei 6 mesi dopo nel 20.2% dei pazienti ICU e 71.8% dei pazienti IMCU. Drolet A,Phys Ther. 2012 Sep 13

  21. E’ sufficiente fare esercizi al letto ? • Non controbilanciano gli effetti avversi del riposo a letto, in particolare l’accumulo di liquidi nel torace rispetto agli arti inferiori per l’assenza di gravità • Nei piani di assistenza sulla mobilizzazione è quindi raccomandata la posizione ortostatica

  22. Mortalità per tutte le cause o reinfarto a un anno dall’IMA. 14 studi (13 pubblicati prima del 1983). Early mobilisation for patients following acute myocardiac infarction: a systematic review and meta-analysis of experimental studies Cortes, Int J Nurs Stud. 2009 Nov;46(11):1496-504

  23. i pazienti con disfunzione ventricolare sinistra devono inizialmente restare a letto per escludere scompenso precoce ed aritmie. • nei casi non complicati il paziente può sedersi fuori dal letto in I giornata, utilizzare la comoda, lavarsi e nutrirsi da solo. • si può iniziare precocemente a camminare (in particolare nei pazienti trattati per via radiale) • i pazienti con complicazioni devono essere mantenuti a letto e la loro attività fisica deve riprendere in funzione dei sintomi e dell’entità del danno miocardico. • Mobilizzazione post IMA: controindicazioni: • scompenso cardiaco instabile e incontrollabile • dolore toracico persistente • PA instabile, shock • tachicardia inappropriata • aritmie persistenti e severe

  24. E I PAZIENTI CON SCOMPENSO ? Eur J Heart Fail. 2010 January; 12(1): 58–65

  25. Esercizio fisico nel paziente con scompenso cardiaco Cardiol Res Pract. 2011; 2011: 837238.

  26. Attività muscolare: riflesso dal muscolo al sistema cardiovascolare e respiratorio Riflesso esagerato nei pazienti con scompenso cardiaco Riflesso causa attivazione del sistema simpatico Attivazione esagerata del sistema simpatico: riduce la dilatazione arteriolare portando a una ridotta perfusione del muscolo.

  27. CONTRO decondizionamento riduzione della mobilità depressione dell’umore Atrofia muscolare Ulcere da decubito Atelettasie polmonari Demineralizzazione ossea invecchiamento PRO Aritmie Scompenso refrattario ischemia Riposo a letto

  28. La riduzione della VO 2max dopo 40 anni di vita (da 20 a 60) era comparabile a quella dopo 3 settimane di riposo a letto all’età di 20 anni ! Journal of Gerontology: 2009. Vol. 64A, No. 2, 293–299

  29. Mobilizzazione precoce vuole dire iniziare la mobilizzazione quando il paziente: • è completamente autonomo • non necessita di supplemento di O2 • non necessita di terapia infusionale • è emodinamicamente stabile • è in grado di collaborare • necessita di livelli di O2 accettabili X

  30. What Are the Barriers to MobilizingIntensive Care Patients? • Audit prospettico di 4 settimane • Pazienti mobilizzati in 176 (54%) di 327 giorni paziente. • Eventi avversi: 2 /176 mobilizzazioni (1.1%) Cause di non mobilizzazione: • Device con accesso vascolare femorale • Procedure • Agitazione o stato di coscienza alterato • Instabilità emodinamica MANCANZA DI RISORSE (INFERMIERI; FISIOTERAPISTI) Cardiopulmonary Physical Therapy Journal Vol 23 March 2012

  31. Crescita culturale riguardo ai potenziali benefici della mobilizzazione precoce e impegno da parte delle figure professionali coinvolte.

  32. Mortalità cardiovascolare - ospedalizzazione per scompenso Keteyian, J Am Coll Cardiol 2012;60:1899–905)

  33. Mitochondrial oxidative capacity is • impaired due to decreased oxidative enzyme activity, mitochondrial volume density and • biogenesis, as well as increased reliance upon glucose rather than fatty acid oxidation. There • is a shift from fatigue-resistant type I fibers that primarily rely on mitochondrial oxidative • phosphorylation to generate ATP to type II fibers that have a higher glycogen content and • derive most of their energy from glycolysis. Additionally, skeletal muscle in heart failure • patients has decreased capillary density6, which correlates with maximal VO2 and total • exercise time7. Fiber atrophy and decreased muscle mass also occur, and have been • demonstrated to account for much of the variability in peak VO2.

  34. Endotheliumderived • nitric oxide-mediated vasodilation is decreased in the peripheral, coronary, and • pulmonary circulations of patients with HF.14–16 The inability of the peripheral vasculature • to respond physiologically to variations in cardiac output, peripheral blood flow and • positional changes results in increased peripheral vascular resistance and imbalance in blood • pressure regulation in patients with advanced heart failure.

  35. Exercise training was shown to induce increased mitochondrial volume density as well as a • shift from type II back to type I fibers.26 • Insulin resistance, which is commonly seen even in nondiabetic patients with heart failure, • has also been associated with reduced exercise capacity.28. One proposed explanation for the • prevalence of insulin resistance has been functional resistance to adiponectin, an insulinsensitizing • adipocytokine. Van Berendoncks et al. studied heart failure patients who • underwent 4 months of combined endurance and resistance exercise training and found, at • baseline, a negative correlation between levels of adiponectin mRNA in skeletal muscle and • VO2 peak and muscle strength, as well as a positive correlation between measures of • exercise capacity and mRNA expression of the skeletal muscle receptor for adiponectin,

  36. There has long been evidence that measures of cardiac function such as ejection fraction and cardiac output only poorly correlate with a patient’s capacity to exercise, suggesting the involvement of factors other than those impacting the central circulation. Furthermore, many studies of the effects of exercise in patients with heart failure have failed to demonstrate improvements in cardiac output, stroke volume, or ejection fraction, despite showing gains in exercise capacity and peak oxygen uptake (VO2),4 which has been validated as an excellent isolated predictor of • outcome in this population5. The lack of a close correlation between central hemodynamicsand exercise tolerance has led to investigations into alterations in the periphery, such as • abnormalities in vascular endothelial function, hyperactivation of the sympathetic nervous • system, and changes in structure and oxidative capacity of skeletal muscle, which are often • seen in patients with heart failure

  37. in skeletal muscle, hyperventilation is another consequence of the exaggerated EPR during exercise, both of which accentu- ates the symptoms of exercise intolerance. It is important to understand how the exaggerated EPR contributes to the exer- cise intolerance in CHF patients. Furthermore, the exaggerated sympatho-excitation that occurs during exercise also increases the risk of experiencing myocardial ischemia, myocardial infarction, cardiac arrest, and/or stroke during or immediately after exercise in these patients. As exercise intolerance and exaggerated sympatho-excitation are important clinical features in these patients, therapeutic inter- ventions are largely aimed at improving these symptoms. A particular interest has recently been directed toward the exagger- ated EPR in CHF (Piepoli et al., 1996, 1999; Khan and Sinoway, 2000; Piepoli, 2006;Wang et al., 2010b, 2012). Once thought to be contraindicated in patients with CHF, long-term regular exercise training (ExT for at least 8 weeks) as a non-pharmacological treat- ment for CHF is now commonly employed in these patients, and has been shown to increase the quality of life as well as survival (Belardinelli et al., 1999; Piepoli et al., 2004; Smart and Marwick, 2004; Jankowska et al., 2007; Wisloff et al., 2007; Flynn et al., 2009; O’Connor et al., 2009). The beneficial effects of ExT include improved autonomic balance, reduced neurohumoral activation, increase in exercise capacity and ameliorated myopathy in CHF patients and animals (Pliquett et al., 2003; Roveda et al., 2003; Rondon et al., 2006; Jankowska et al., 2007; Mueller, 2007b; Negrao and Middlekauff, 2008). Adequate discussion of the ben- eficial effects of ExT in CHF is a large endeavor and beyond the

  38. ESERCIZIO FISICO E SCOMPENSO CARDIACO (CHF) Funzione metabolica Funzione Autonoma Funzione muscolare Funzione endoteliale Aumentata tollerabilità all’esercizio fisico e ridotta ventilazione sottosforzo Qualità della vita Benessere generale G.I.C.R.- IACPR

  39. Coronary blood flow Hambrecht R. et al. NEJM 2000;342:454

  40. Exercise Training in compensated stable CHF pts • improves peripheral vascular, muscular and metabolic function • improves respiratory and autonomic function • these effects lead to a significant improvement in exercise tolerance and quality of life • no significant deterioration in central hemodynamics • attenuation of unfavorable LV remodeling

  41. Il training fisico: effetti fisiologici INCREMENTA: Il flusso muscolare e l’estrazione di O2 Il rilascio dell’ NO La capacitàaerobica La soglia ischemica La capacità lavorativa Il colesterolo HDL RIDUCE: Il VO2 miocardico La FC e la PA a riposo e durante sforzo La produzione muscolare di acido lattico La trigliceridemia L’aggregabilità piastrinica La produzione di catecolamine

  42. Result Filters • Display Settings: • Abstract • Send to: • Am J Med. 2004 May 15;116(10):682-92. • Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized controlled trials. • Taylor RS, Brown A, Ebrahim S, Jolliffe J, Noorani H, Rees K, Skidmore B, Stone JA, Thompson DR, Oldridge N. • Source • Department of Epidemiology and Public Health, University of Birmingham, Birmingham, United Kingdom. r.s.taylor@bham.ac.uk • Abstract • PURPOSE: • To review the effectiveness of exercise-based cardiac rehabilitation in patients with coronary heart disease. • METHODS: • A systematic review and meta-analysis of randomized controlled trials was undertaken. Databases such as MEDLINE, EMBASE, and the Cochrane Library were searched up to March 2003. Trials with 6 or more months of follow-up were included if they assessed the effects of exercise training alone or in combination with psychological or educational interventions. • RESULTS: • We included 48 trials with a total of 8940 patients. Compared with usual care, cardiac rehabilitation was associated with reduced all-cause mortality (odds ratio [OR] = 0.80; 95% confidence interval [CI]: 0.68 to 0.93) and cardiac mortality (OR = 0.74; 95% CI: 0.61 to 0.96); greater reductions in total cholesterol level (weighted mean difference, -0.37 mmol/L [-14.3 mg/dL]; 95% CI: -0.63 to -0.11 mmol/L [-24.3 to -4.2 mg/dL]), triglyceride level (weighted mean difference, -0.23 mmol/L [-20.4 mg/dL]; 95% CI: -0.39 to -0.07 mmol/L [-34.5 to -6.2 mg/dL]), and systolic blood pressure (weighted mean difference, -3.2 mm Hg; 95% CI: -5.4 to -0.9 mm Hg); and lower rates of self-reported smoking (OR = 0.64; 95% CI: 0.50 to 0.83). There were no significant differences in the rates of nonfatal myocardial infarction and revascularization, and changes in high- and low-density lipoprotein cholesterol levels and diastolic pressure. Health-related quality of life improved to similar levels with cardiac rehabilitation and usual care. The effect of cardiac rehabilitation on total mortality was independent of coronary heart disease diagnosis, type of cardiac rehabilitation, dose of exercise intervention, length of follow-up, trial quality, and trial publication date. • CONCLUSION: • This review confirms the benefits of exercise-based cardiac rehabilitation within the context of today's cardiovascular service provisi

  43. Crit Care Med. 2008 Aug;36(8):2238-43. • Early intensive care unit mobility therapy in the treatment of acute respiratory failure. • Morris PE, Goad A, Thompson C, Taylor K, Harry B, Passmore L, Ross A, Anderson L, Baker S, Sanchez M, Penley L, Howard A, Dixon L, Leach S, Small R, Hite RD, Haponik E. • Source • Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University School of Medicine, Winston Salem, NC, USA. pemorris@wfubmc.edu • Abstract • OBJECTIVE: • Immobilization and subsequent weakness are consequences of critical illness. Despite the theoretical advantages of physical therapy to address this problem, it has not been shown that physical therapy initiated in the intensive care unit offers benefit. • DESIGN AND SETTING: • Prospective cohort study in a university medical intensive care unit that assessed whether a mobility protocol increased the proportion of intensive care unit patients receiving physical therapy vs. usual care. • PATIENTS: • Medical intensive care unit patients with acute respiratory failure requiring mechanical ventilation on admission: Protocol, n = 165; Usual Care, n = 165. • INTERVENTIONS: • An intensive care unit Mobility Team (critical care nurse, nursing assistant, physical therapist) initiated the protocol within 48 hrs of mechanical ventilation. • MEASUREMENTS AND MAIN RESULTS: • The primary outcome was the proportion of patients receiving physical therapy in patients surviving to hospital discharge. Baseline characteristics were similar between groups. Outcome data are reflective of survivors. More Protocol patients received at least one physical therapy session than did Usual Care (80% vs. 47%, p < or = .001). Protocol patients were out of bed earlier (5 vs. 11 days, p < or = .001), had therapy initiated more frequently in the intensive care unit (91% vs. 13%, p < or = .001), and had similar low complication rates compared with Usual Care. For Protocol patients, intensive care unit length of stay was 5.5 vs. 6.9 days for Usual Care (p = .025); hospital length of stay for Protocol patients was 11.2 vs. 14.5 days for Usual Care (p = .006) (intensive care unit/hospital length of stay adjusted for body mass index, Acute Physiology and Chronic Health Evaluation II, vasopressor). There were no untoward events during an intensive care unit Mobility session and no cost difference (survivors + nonsurvivors) between the two arms, including Mobility Team costs. • CONCLUSIONS: • A Mobility Team using a mobility protocol initiated earlier physical therapy that was feasible, safe, did not increase costs, and was associated with decreased intensive care unit and hospital length of stay in survivors who received physical therapy during intensive care unit treatment compared with patients who received usual care.

  44. Chest. 2011 Dec;140(6):1612-7. • Implementing early mobilization interventions in mechanically ventilated patients in the ICU. • Schweickert WD, Kress JP. • Source • Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, USA. • Abstract • As ICU survival continues to improve, clinicians are faced with short- and long-term consequences of critical illness. Deconditioning and weakness have become common problems in survivors of critical illness requiring mechanical ventilation. Recent literature, mostly from a medical population of patients in the ICU, has challenged the patient care model of prolonged bed rest. Instead, the feasibility, safety, and benefits of early mobilization of mechanically ventilated ICU patients have been reported in recent publications. The benefits of early mobilization include reductions in length of stay in the ICU and hospital as well as improvements in strength and functional status. Such benefits can be accomplished with a remarkably acceptable patient safety profile. The importance of interactions between mind and body are highlighted by these studies, with improvements in patient awareness and reductions in ICU delirium being noted. Future research to address the benefits of early mobilization in other patient populations is needed. In addition, the potential for early mobilization to impact long-term outcomes in ICU survivors requires further study.

  45. Crit Care Med. 2007 Jan;35(1):139-45. • Earlyactivity is feasible and safe in respiratory failure patients. • Bailey P, Thomsen GE, Spuhler VJ, Blair R, Jewkes J, Bezdjian L, Veale K, Rodriquez L, Hopkins RO. • Source • Department of Medicine, Pulmonary and Critical Care Division, LDS Hospital, Salt Lake City, UT, USA. • Abstract • OBJECTIVE: • To determine whether early activity is feasible and safe in respiratory failure patients. • DESIGN: • Prospective cohort study. • SETTING: • From June 1, 2003, through December 31, 2003, we assessed safety and feasibility of early activity in all consecutive respiratory failure patients who required mechanical ventilation for >4 days admitted to our respiratory intensive care unit (RICU). A majority of patients were treated in another intensive care unit (ICU) before RICU admission. We excluded patients who required mechanical ventilation for < or =4 days. • PATIENTS: • Eight-bed RICU at LDS Hospital. • INTERVENTIONS: • We assessed patients for early activity as part of routine respiratory ICU care. We prospectively recorded activity events and adverse events. We defined three activity events as sit on bed, sit in chair, and ambulate. We defined six activity-related adverse events as fall to knees, tube removal, systolic blood pressure >200 mm Hg, systolic blood pressure <90 mm Hg, oxygen desaturation <80%, and extubation. • MEASUREMENTS AND MAIN RESULTS: • During the study period, we conducted a total of 1,449 activity events in 103 patients. The activity events included 233 (16%) sit on bed, 454 (31%) sit in chair, and 762 (53%) ambulate. In patients with an endotracheal tube in place, there were a total of 593 activity events, of which 249 (42%) were ambulation. There were <1% activity-related adverse events, including fall to the knees without injury, feeding tube removal, systolic blood pressure >200 mm Hg, systolic blood pressure <90 mm Hg, and desaturation <80%. No patient was extubated during activity. • CONCLUSIONS: • We conclude that early activity is feasible and safe in respiratory failure patients. A majority of survivors (69%) were able to ambulate >100 feet at RICU discharge. Early activity is a candidate therapy to prevent or treat the neuromuscular complications of critical illness.

More Related